Аналогия между механическими и электромагнитными колебаниями таблица. Гармонические электромагнитные колебания. Энергетические превращения в колебательном контуре

Электрические и магнитные явления неразрывно связаны между собой. Изменение электрических характеристик какого-либо явления влечет за собой изменение его магнитных характеристик. Особую практическую ценность представляют электромагнитные колебания.

Электромагнитные колебания – это взаимосвязанные изменения электрического и магнитного полей, при которых значения величин, характеризующих систему (электрический заряд, ток, напряжение, энергия), повторяются в той или иной степени.

Следует отметить, что между колебаниями различной физической природы существует аналогия. Они описываются одинаковыми дифференциальными уравнениями и функциями. Поэтому сведения, полученнные при изучении механических колебаний, оказваются полезными и при изучении электромагнитных колебаний.

В современной технике электромагнитные колебания и волны играют большую роль, чем механические, так как используются в устройствах связи, телевидения, радиолокации, в различных технологических процессах, определивших научно-технический прогресс.

Электромагнитные колебания возбуждаются в колебательной системе, называемой колебательным контуром . Известно, что любой проводник обладает электрическим сопротивлением R , электроемкостью С и индуктивностью L , причем эти параметры рассредоточены по длине проводника. Сосредоточенными параметрами R , С , L обладают резистор, конденсатор и катушка соответственно.

Колебательным контуром называется замкнутая электрическая цепь, состоящая из резистора, конденсатора и катушки (рис. 4.1). Такая система аналогична механическому маятнику.

Контур находится в состоянии равновесия, если в нем нет зарядов и токов. Чтобы вывести контур из равновесия, необходимо сообщить конденсатору заряд (или возбудить индукционный ток с помощью из меняющегося магнитного поля). Тогда в конденсаторе возникнет электрическое поле с напряженностью . При замыкании ключа К в контуре пойдет ток, в результате конденсатор будет разряжаться, энергия электрического поля уменьшаться, а энергия магнитного поля катушки индуктивности увеличиваться.

Рис. 4.1 Колебательный контур

В некоторый момент времени, равный четверти периода конденсатор полностью разрядится, а магнитное поле достигнет максимума. Это означает, что произошло превращение энергии электрического поля в энергию магнитного поля. Так как токи, поддерживающие магнитное поле исчезли, то оно начнет убывать. Убывающее магнитное поле вызывает ток самоиндукции, который по закону Ленца направлен так же, как ток разряда. Поэтому конденсатор будет перезаряжаться и между его пластинами появится электрическое поле с напряженностью, противоположной первоначальной. Через время, равное половине периода магнитное поле исчезнет, а электрическое – достигнет максимума.

Затем все процессы будут происходить в обратном направлении и через время, равное периоду колебаний, колебательный контур придет в первоначальное состояние с зарядом конденсатора . Следовательно, в контуре возникают электрические колебания.

Для полного математического описания процессов в контуре надо найти закон изменения одной из величин (например, заряда) с течением времени, который при использовании законов электромагнетизма позволит найти закономерности изменения всех других величин. Функции, описывающие изменение величин, характеризующих процессы в контуре, являются решением дифференциального уравнения. Для его составления применяют закон Ома и правила Кирхгофа. Однако они выполняются для постоянного тока.

Анализ процессов, происходящих в колебательном контуре, показал, что законы постоянного тока можно применять и для изменяющегося во времени тока, удовлетворяющего условию квазистационарности. Это условие состоит в том, что за время распространения возмущения до самой удаленной точки цепи сила тока и напряжение изменяются незначительно, тогда мгновенные значения электрических величин во всех точках цепи практически одинаковы. Так как электромагнитное поле распространяется в проводнике со скоростью света в вакууме, то время распространения возмущений всегда меньше периода колебаний тока и напряжения.

В отсутствие внешнего источника в колебательном контуре происходят свободные электромагнитные колебания.

Согласно второму правилу Кирхгофа сумма напряжений на резисторе и на конденсаторе равна электродвижущей силе, в данном случае ЭДС самоиндукции, возникающей в катушке при протекании в ней изменяющегося тока

Учитывая, что , и, следовательно, , представим выражение (4.1) в виде:

. (4.2)

Введем обозначения: , .

Тогда уравнение (4.2) примет вид:

. (4.3)

Полученное выражение является дифференциальным уравнением, описывающим процессы в колебательном контуре.

В идеальном случае, когда сопротивлением резистора можно пренебречь, свободные колебания в контуре являются гармоническими .

В этом случае дифференциальное уравнение (4.3) примет вид:

а его решение будет являться гармонической функцией

, (4.5)

Основной ценностью материала презентации является наглядность поэтапной акцентированной динамики формирования понятий относящихся законам механических и особенно электромагнитных колебаний в колебательных системах.

Скачать:


Подписи к слайдам:

Аналогия между механическими и электромагнитными колебаниями. Для учащихся 11 класса Белгородская область г. Губкин МБОУ «СОШ №3» Скаржинский Я.Х. ©

Колебательный контур

Колебательный контур Колебательный контур при отсутствии активного R

Электрическая колебательная система Механическая колебательная система

Электрическая колебательная система с потенциальной энергией заряженного конденсатора Механическая колебательная система с потенциальной энергией деформированной пружины

Аналогия между механическими и электромагнитными колебаниями. ПРУЖИНА КОНДЕНСАТОР ГРУЗ КАТУШК А Механические величины Электрические величины Координата х Заряд q Скорость v x Сила тока i Масса m Индуктивность L Потенциальная энергия kx 2 /2 Энергия электрического поля q 2 /2 Жесткость пружины k Величина, обратная емкости 1/C Кинетическая энергия mv 2 /2 Энергия магнитного поля Li 2 /2

Аналогия между механическими и электромагнитными колебаниями. 1 Найти энергию магнитного поля катушки в колебательном контуре, если её индуктивность равна 5 мГн, а max сила тока – 0,6 мА. 2 Чему был равен max заряд на обкладках конденсатора в том же колебательном контуре, если его емкость рана 0,1 пФ? Решение качественных и количественных задач по новой теме.

Домашнее задание: §


По теме: методические разработки, презентации и конспекты

Главные цели и задачи урока:Осуществить проверку знаний, умений и навыков по пройденной теме с учётом индивидуальных особенностей каждого учащегося.Стимулировать сильных учеников на расширение их деят...

конспект урока "Механические и электромагнитные колебания"

Данную разработку можно использовать при изучении темы в 11 классе: «Электромагнитные колебания». Материал предназначен для изучения новой темы....

Темы кодификатора ЕГЭ : свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания - это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур - это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания - периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия - только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через . Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент : . Заряд конденсатора равен , ток через катушку отсутствует (рис. 1 ). Конденсатор сейчас начнёт разряжаться.

Рис. 1.

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия . Маятник оттянут вправо на величину и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : . Конденсатор разряжается, его заряд в данный момент равен . Ток через катушку нарастает (рис. 2 ).

Рис. 2.

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость маятника постепенно увеличивается. Деформация пружины (она же - координата маятника) уменьшается.

Конец первой четверти : . Конденсатор полностью разрядился. Сила тока достигла максимального значения (рис. 3 ). Сейчас начнётся перезарядка конденсатора.

Рис. 3.

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия . Маятник проходит положение равновесия. Его скорость достигает максимального значения . Деформация пружины равна нулю.

Вторая четверть : . Конденсатор перезаряжается - на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4 ).

Рис. 4.

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия . Маятник продолжает двигаться влево - от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти . Конденсатор полностью перезарядился, его заряд опять равен (но полярность другая). Сила тока равна нулю (рис. 5 ). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5.

Аналогия . Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна .

Третья четверть : . Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6 ).

Рис. 6.

Аналогия . Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти : . Конденсатор полностью разрядился. Ток максимален и снова равен , но на сей раз имеет другое направление (рис. 7 ).

Рис. 7.

Аналогия . Маятник снова проходит положение равновесия с максимальной скоростью , но на сей раз в обратном направлении.

Четвёртая четверть : . Ток убывает, конденсатор заряжается (рис. 8 ).

Рис. 8.

Аналогия . Маятник продолжает двигаться вправо - от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода : . Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9 ).

Рис. 9.

Данный момент идентичен моменту , а данный рисунок - рисунку 1 . Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия . Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими - они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость , индуктивность катушки равна .

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен , а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия контура сосредоточена в конденсаторе:

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен , а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

В произвольный момент времени, когда заряд конденсатора равен и через катушку течёт ток , энергия контура равна:

Таким образом,

(1)

Соотношение (1) применяется при решении многих задач.

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1) :

(2)

Здесь, как вы уже поняли, - жёсткость пружины, - масса маятника, и - текущие значения координаты и скорости маятника, и - их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2) , мы видим следующие соответствия:

(3)

(4)

(5)

(6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

B соответствии с аналогиями (5) и (6) заменяем здесь массу на индуктивность , а жёсткость на обратную ёмкость . Получим:

(7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона . Мы вскоре приведём её более строгий вывод.

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими , если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока - ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10 ).

Рис. 10. Положительное направление обхода

Сила тока считается положительной class="tex" alt="(I > 0)"> , если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной .

Заряд конденсатора - это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае - заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: (при ином выборе знаков могло случиться ). Действительно, знаки обеих частей совпадают: если class="tex" alt="I > 0"> , то заряд левой пластины возрастает, и потому class="tex" alt="\dot{q} > 0"> .

Величины и меняются со временем, но энергия контура остаётся неизменной:

(8)

Стало быть, производная энергии по времени обращается в нуль: . Берём производную по времени от обеих частей соотношения (8) ; не забываем, что слева дифференцируются сложные функции (Если - функция от , то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: ):

Подставляя сюда и , получим:

Но сила тока не является функцией, тождественно равной нулю; поэтому

Перепишем это в виде:

(9)

Мы получили дифференциальное уравнение гармонических колебаний вида , где . Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

(10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

(11)

Циклическая частота находится по формуле (10) ; амплитуда и начальная фаза определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при заряд конденсатора максимален и равен (как на рис. 1 ); ток в контуре отсутствует. Тогда начальная фаза , так что заряд меняется по закону косинуса с амплитудой :

(12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12) , опять-таки не забывая о правиле нахождения производной сложной функции:

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз - по закону синуса:

(13)

Амплитуда силы тока равна:

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени (рис. 2 ).

Ток течёт в отрицательном направлении: . Поскольку , фаза колебаний находится в первой четверти: . Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13) .

А теперь посмотрите на рис. 8 . Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13) . Для наглядности представим эти графики в одних координатных осях (рис. 11 ).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

запишем закон изменения тока (13) в виде:

Сопоставляя это выражение с законом изменения заряда , мы видим, что фаза тока, равная , больше фазы заряда на величину . В таком случае говорят, что ток опережает по фазе заряд на ; или сдвиг фаз между током и зарядом равен ; или разность фаз между током и зарядом равна .

Опережение током заряда по фазе на графически проявляется в том, что график тока сдвинут влево на относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз ).

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12 ).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

то в контуре происходят колебания заряда и тока с циклической частотой (и с периодом, соответственно, ). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте .

Амплитуда вынужденных колебаний заряда и тока зависит от частоты : амплитуда тем больше,чем ближе к собственной частоте контура .При наступает резонанс - резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ. СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ ЭЛЕКТРИЧЕСКИЕ КОЛЕБАНИЯ В КОЛЕБАТЕЛЬНОМ КОНТУРЕ.

  1. Электромагнитные колебания - взаимосвязанные колебания электрического и магнитного полей.

Электромагнитные колебания появляются в различных электрических цепях. При этом колеблются величина заряда, напряжение, сила тока, напряженность электрического поля, индукция магнитного поля и другие электродинамические величины.

Свободные электромагнитные колебания возникают в электромагнитной системе после выведения ее из состояния равновесия, например, сообщением конденсатору заряда или изменением тока в участке цепи.

Это затухающие колебания , так как сообщенная системе энергия расходуется на нагревание и другие процессы.

Вынужденные электромагнитные колебания - незатухающие колебания в цепи, вызванные внешней периодически изменяющейся синусоидальной ЭДС.

Электромагнитные колебания описываются теми же законами, что и механические, хотя физическая природа этих колебаний совершенно различна.

Электрические колебания - частный случай электромагнитных, когда рассматривают колебания только электрических величин. В этом случае говорят о переменных токе, напряжении, мощности и т.д.

  1. КОЛЕБАТЕЛЬНЫЙ КОНТУР

Колебательный контур - электрическая цепь, состоящая из последовательно соединенных конденсатора емкостью C, катушки индуктивностью L и резистора сопротивлением R. Идеальный контур – если сопротивлением можно пренебречь, то есть, только конденсатор С и идеальная катушка L.

Состояние устойчивого равновесия колебательного контура характеризуется минимальной энергией электрического поля (конденсатор не заряжен) и магнитного поля (ток через катушку отсутствует).

  1. ХАРАКТЕРИСТИКИ ЭЛЕКТРОМАГНИТНЫХ КОЛЕБАНИЙ

Аналогия механических и электромагнитных колебаний

Характеристики:

Механические колебания

Электромагнитные колебания

Величины, выражающие свойства самой системы (параметры системы):

m- масса (кг)

k- жесткость пружины (Н/м)

L- индуктивность (Гн)

1/C- величина, обратная емкости (1/Ф)

Величины, характеризующие состояние системы:

Кинетическая энергия (Дж)

Потенциальная энергия (Дж)

х - смещение (м)

Электрическая энергия(Дж )

Магнитная энергия (Дж)

q - заряд конденсатора (Кл)

Величины, выражающие изменение состояния системы:

v = x"(t) скорость-быстрота смещения (м/с)

i = q"(t) сила тока – быстрота изменения заряда (А)

Другие характеристики:

T=1/ν

T=2π/ω

ω=2πν

T- период колебаний время одного полного колебания(с)

ν- частота-число колебаний за единицу времени (Гц)

ω - циклическая частота число колебаний за 2π секунд(Гц)

φ=ωt – фаза колебаний- показывает, какую часть от амплитудного значения принимает в данный момент колеблющаяся величина, т.е. фаза определяет состояние колеблющейся системы в любой момент времени t.

где q" - вторая производная заряда по времени.

Величина является циклической частотой. Такими же уравнениями описываются колебания тока, напряжения и других электрических и магнитных величин.

Одним из решений уравнения (1) является гармоническая функция

Это интегральное уравнение гармонических колебаний.

Период колебаний в контуре (формула Томсона):

Величина φ = ώt + φ 0 , стоящая под знаком синуса или косинуса, является фазой колебания.

Ток в цепи равен производной заряда по времени, его можно выразить

Напряжение на пластинах конденсатора изменяется по закону:

Где I max =ωq мак – амплитуда силы тока (А),

U max =q max /C - амплитуда напряжения (В)

Задание: для каждого состояния колебательного контура записать значения заряда на конденсаторе, тока в катушке, напряженности электрического поля, индукции магнитного поля, электрической и магнитной энергии.


Аналогия между механическими и электромагнитными колебаниями


Колеба́ния
- повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия.

Колебания почти всегда связаны с попеременным превращением энергии одной формы проявления в другую форму.

Классификация по физической природе :


-Механические (звук,вибрация)
-Электромагнитные (свет,радиоволны,тепловые)

Характеристики:

  • Амплитуда - максимальное отклонение колеблющейся величины от некоторого усреднённого её значения для системы, А (м)
  • Период - промежуток времени, через который повторяются какие-либо показатели состояния системы (система совершает одно полное колебание), T (сек)
  • Частота - число колебаний в единицу времени, v (Гц, сек −1) .

Период колебаний T и частота v - обратные величины;

T=1/v и v=1/T

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота W (рад/сек, Гц, сек −1) , показывающая число колебаний за единиц времени:

w = 2П/T = 2ПV

Электромагнитные колебания в контуре имеют сходство со свободными механическими колебаниями (с колебаниями тела,закрепленного на пружине).

Сходство относится к процессам периодического изменения различных величин.
-Характер изменения величин объясняется,имеющейся аналогией в условиях,при которых порождаются механические и электромагнитные колебания.

-Возвращение к положению равновесия тела на пружине вызывается силой упругости,пропорциональной смещению тела от положения равновесия.

Коэффициент пропорциональности -это жесткость пружины k .

Разрядка конденсатора(появление тока) обусловлена напряжением u между пластинами конденсатора,которое пропорционально заряду q .
Коэффициент пропорциональности - 1/С,обратный емкости (так как u = 1/C*q )

Подобно тому как вследствие инертности тело лишь постепенно увеличивает скорость под действием силы и эта скорость после прекращения действия силы не становится сразу равной нулю,электрический ток в катушке за счет явления самоиндукции увеличивается под действием напряжения постепенно и не исчезает сразу,когда это напряжение становится равным нулю.Индуктивность контура L играет ту же роль,что и масса тела m в механике.Соответственно кинетической энергии тела mv(x)^2/2 отвечает энергия магнитного поля тока Li^2/2.

Зарядке конденсатора от батареи соответствует сообщение телу,прикрепленному к пружине,потенциальной энергии при смещении тела (например рукой)на расстоянии Xm от положения равновесия (рис.75,а). Сравнивая это выражение с энергией конденсатора,замечаем,что жесткость К пружины играет при механическом колебательном процессе такую же роль,как величина 1/C,обратная емкости при электромагнитных колебаниях,а начальная координата Xm соответствует заряду Qm.

Возникновение в электрической цепи тока i за счет разности потенциалов соответствует появлению в механической колебательной системе скорости Vx под действием силы упругости пружины (рис.75,б)

Моменту,когда конденсатор разрядится,а сила тока достигнет максимума,соответствует прохождение тела через положение равновесия с максимальной скоростью (рис.75,в)

Далее конденсатор начнет перезаряжаться,а тело -смещаться влево от положения равновесия (рис.75,г). По прошествии половины периода Т конденсатор полностью перезарядится и сила тока станет равной нулю.Этому состоянию соответствует отклонение тела в крайнее левое положение,когда его скорость равна нулю(рис.75,д).