Один из создателей квантовой механики. Вернер карл гейзенберг цитаты

ВЕРНЕР ГЕЙЗЕНБЕРГ

Вернер Гейзенберг был одним из самых молодых учёных, получивших Нобелевскую премию. Целеустремлённость и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки - принципа неопределённости.

Вернер Карл Гейзенберг родился 5 декабря 1901 года в немецком городе Вюрцбурге. Отец Вернера, Август, благодаря успешной научной деятельности сумел подняться до уровня представителей высшего класса немецкой буржуазии. В 1910 году он стал профессором византийской филологии Мюнхенского университета. Матерью мальчика была урождённая Анна Веклейн.

С самого рождения Вернера его семья твёрдо решила, что он тоже должен достичь высокого социального положения благодаря образованию. Полагая, что соперничество должно благоприятствовать достижению успеха в науке, отец провоцировал Вернера и его старшего брата Эрвина к постоянной конкуренции. В течение многих лет мальчики часто дрались, и однажды соперничество довело их до такой драки, что они били друг друга деревянными стульями. Повзрослев, каждый из них пошёл собственным путём: Эрвин уехал в Берлин и стал химиком, они почти не общались, не считая редких встреч в кругу семьи.

В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Гёттингенском университете. Борн был уверен, что атомный микромир настолько отличается от макромира, описанного классической физикой, что учёным нечего и думать пользоваться при изучении строения атома привычными понятиями о движении и времени, скорости, пространстве и определённом положении частиц. Основа микромира - кванты, которые не следовало пытаться понять или объяснить с наглядных позиций устаревшей классики. Эта радикальная философия нашла горячий отклик в душе его нового ассистента.

Действительно, состояние атомной физики напоминало в это время какое-то нагромождение гипотез. Вот если бы кому-нибудь удалось на опыте доказать, что электрон действительно волна, вернее, и частица и волна… Но таких опытов пока не было. А раз так, то и исходить из одних только предположений, что представляет собой электрон, по мнению педантичного Гейзенберга, было некорректно. А нельзя ли создать теорию, в которой будут только известные экспериментальные данные об атоме, полученные при изучении излучаемого им света? Что можно сказать об этом свете наверняка? Что он имеет такую-то частоту и такую-то интенсивность, не больше…

По теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определённой частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью чисто математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой учёный выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц - квантовой механики.

В ней вообще не говорится ни о каком движении электрона. Движения в прежнем смысле этого слова не существует. Матрицы описывают просто изменения состояния системы. Потому спорные вопросы об устойчивости атома, о вращении электронов вокруг ядра, о его излучении отпадают сами собой. Вместо орбиты в механике Гейзенберга электрон характеризуется набором или таблицей отдельных чисел вроде координат на географической карте.

Надо сказать, что матричная механика появилась весьма кстати. Идеи Гейзенберга подхватили другие физики, и скоро, по выражению Бора, она приобрела «вид, который по своей логической завершённости и общности мог конкурировать с классической механикой».

Впрочем, было в работе Гейзенберга и одно удручающее обстоятельство. По его словам, ему никак не удавалось вывести из новой теории простой спектр водорода. И каково было его удивление, когда некоторое время спустя после опубликования его работы… «Паули преподнёс мне сюрприз: законченную квантовую механику атома водорода. Мой ответ от 3 ноября начинался словами: „Едва ли нужно писать, как сильно я радуюсь новой теории атома водорода и насколько велико моё удивление, что Вы так быстро смогли её разработать“».

Почти в то же самое время теорией атома с помощью новой механики занимался и английский физик Дирак. И у Гейзенберга, и у Дирака вычисления носили крайне абстрактный характер. Никто из них не уточнял сущность употребляемых символов. И лишь в конце вычислений вся их математическая схема давала правильный результат.

Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна - это частица, а частица - волна. Как представить себе такого оборотня?

Работавший в то время в Цюрихе Эрвин Шрёдингер подошёл к проблемам атомной физики совершенно с другой стороны и с другими целями. Его идея состояла в том, что любую движущуюся материю можно рассматривать в виде волн. Если это верно, то Шрёдингер превращал основы матричной механики Гейзенберга в нечто совершенно неприемлемое.

В мае 1926 года Шрёдингер опубликовал доказательство того, что эти два конкурирующих подхода по существу математически эквивалентны. Гейзенберг и другие приверженцы матричной механики сразу же начали борьбу в защиту своей концепции, причём с обеих сторон она принимала всё более эмоциональную окраску. В защиту этого подхода они поставили на карту своё будущее. Шрёдингер же рисковал своей репутацией, отказываясь от признания кажущихся иррациональными понятий дискретности и квантовых скачков и возвращаясь к физическим закономерностям непрерывного, причинно обусловленного и рационального волнового движения. Ни одна из сторон не желала пойти на уступки, что означало бы признание профессионального превосходства противников. Сама суть и будущее направление развития квантовой механики внезапно стали предметом спора в научном мире.

Этот раздор в дальнейшем усилился в связи с появлением карьерных амбиций со стороны Гейзенберга. Всего за несколько недель до того, как Шрёдингер опубликовал доказательство эквивалентности обоих подходов, Гейзенберг отказался от должности профессора в Лейпцигском университете, отдав предпочтение сотрудничеству с Бором в Копенгагене. Скептически настроенный Веклейн, дед Вернера, поспешил в Копенгаген, чтобы попытаться отговорить внука от принятого им решения; именно в этот момент появилась работа Шрёдингера об эквивалентности обоих подходов. Возобновившееся давление Веклейна и брошенный Шрёдингером вызов фундаментальным основам матричной физики заставили Гейзенберга удвоить усилия и попытаться сделать работу на таком высоком уровне, чтобы она получила широкое признание у специалистов, и в конечном итоге обеспечила бы получение места на какой-либо другой кафедре.

Однако по крайней мере три события, происшедшие в 1926 году, вызвали у него ощущение огромной пропасти между его идеями и точкой зрения Шрёдингера. Первое из них - цикл лекций, прочитанный Шрёдингером в Мюнхене в конце июля и посвящённый его новой физике. На этих лекциях молодой Гейзенберг доказывал переполненной аудитории, что теория Шрёдингера не объясняет некоторых явлений. Однако он не сумел никого убедить и покинул конференцию в подавленном состоянии. Затем на осенней конференции немецких учёных и врачей Гейзенберг стал свидетелем полной и, с его точки зрения, ошибочной поддержки идей Шрёдингера.

Наконец, в Копенгагене в сентябре 1926 года между Бором и Шрёдингером разгорелась дискуссия, в которой ни одна из сторон не добилась успеха. В итоге было признано, что никакую из существующих интерпретаций квантовой механики нельзя считать вполне приемлемой.

Движимый в своей работе разными мотивами - личными, профессиональными и научными, - Гейзенберг в феврале 1927 года неожиданно дал нужную интерпретацию, сформулировав принцип неопределённости и не сомневаясь в его правильности.

В письме к Паули от 23 февраля 1927 года он приводит почти все существенные подробности представленной ровно через месяц статьи «О квантовотеоретическом истолковании кинематических и механических соотношений», посвящённой принципу неопределённости.

Согласно принципу неопределённости, одновременное измерение двух так называемых сопряжённых переменных, таких как положение (координата) и импульс движущейся частицы, неизбежно приводит к ограничению точности. Чем более точно измерено положение частицы, тем с меньшей точностью можно измерить её импульс, и наоборот. В предельном случае абсолютно точное определение одной из переменных ведёт к полному отсутствию точности при измерении другой.

Неопределённость - это не вина экспериментатора: она является фундаментальным следствием уравнений квантовой механики и характерным свойством каждого квантового эксперимента. Кроме того, Гейзенберг заявил, что пока справедлива квантовая механика, принцип неопределённости не может быть нарушен. Впервые со времён научной революции ведущий физик провозгласил, что существуют пределы научного познания.

Совместно с идеями таких светил, как Нильс Бор и Макс Борн, принцип неопределённости Гейзенберга вошёл в логически замкнутую систему «копенгагенской интерпретации», которую Гейзенберг и Борн перед встречей ведущих физиков мира в октябре 1927 года объявили полностью завершённой и неизменяемой. Эта встреча, пятая из знаменитых Сольвеевских конгрессов, произошла всего несколько недель спустя после того, как Гейзенберг стал профессором теоретической физики в Лейпцигском университете. Будучи всего двадцати пяти лет от роду, он стал самым молодым профессором в Германии.

Гейзенберг впервые представил чётко сформулированный вывод о наиболее глубоком следствии из принципа неопределённости, связанном с отношением к классическому понятию причинности.

Принцип причинности требует, чтобы каждому явлению предшествовала единственная причина. Это положение отрицается принципом неопределённости, доказываемым Гейзенбергом. Причинная связь между настоящим и будущим теряется, а законы и предсказания квантовой механики имеют вероятностный, или статистический, характер.

Гейзенбергу и другим «копенгагенцам» потребовалось совсем немного времени, чтобы донести отстаиваемое ими учение до тех, кто не посещал европейских институтов. В Соединённых Штатах Гейзенберг нашёл особенно благоприятную среду для обращения в свою веру новых сторонников. Во время совместного с Дираком кругосветного путешествия в 1929 году Гейзенберг прочёл в Чикагском университете оказавший огромное влияние на слушателей курс лекций по «копенгагенской доктрине». В предисловии к своим лекциям Гейзенберг писал: «Цель этой книги можно считать достигнутой, если она будет содействовать утверждению копенгагенского духа квантовой теории… который указал дорогу общему развитию современной атомной физики».

Когда «носитель» этого «духа» вернулся в Лейпциг, его ранние научные труды были широко признаны в той области профессиональной деятельности, которая обеспечивала ему высокое положение как в обществе, так и в науке. В 1933 году одновременно со Шрёдингером и Дираком его работы получили высшее признание - Нобелевскую премию.

В течение пяти лет в Институте Гейзенберга были созданы важнейшие квантовые теории твёрдокристаллического состояния, молекулярной структуры, рассеяния излучения на ядрах и протон-нейтронной модели ядер. Совместно с другими теоретиками они сделали огромный шаг в сторону релятивистской квантовой теории поля и заложили основы для развития исследований в области физики высоких энергий.

Эти достижения привлекли многих лучших студентов в такое научное учреждение, как Институт Гейзенберга. Воспитанные в традициях «копенгагенской доктрины», они сформировали новое доминирующее поколение физиков, которые распространили эти идеи, разъехавшись по всему миру в тридцатые годы после прихода к власти Гитлера.

Хотя Гейзенберг по праву считается сегодня одним из величайших физиков современности, он в то же время подвергается критике за многие его поступки после прихода к власти Гитлера. Гейзенберг никогда не был членом нацистской партии, однако он занимал высокие академические должности и был символом немецкой культуры на оккупированных территориях. С 1941 по 1945 год Гейзенберг был директором института физики кайзера Вильгельма и профессором Берлинского университета. Не раз отвергая предложения эмигрировать, он возглавил основные исследования по расщеплению урана, в которых был заинтересован Третий рейх.

После окончания войны учёный был арестован и отправлен в Англию. Гейзенберг давал различные объяснения своим действиям, которые ещё больше способствовали падению его репутации за границей. Верный сын своей страны, Гейзенберг, которому удалось проникнуть в тайны природы, не сумел разглядеть и понять глубину трагедии, в которую была ввергнута Германия.

В 1946 году Гейзенберг вернулся в Германию. Он становится директором Физического института и профессором Гёттингенского университета. С 1958 года учёный являлся директором Физического университета и астрофизики, а также профессором Мюнхенского университета.

В последние годы усилия Гейзенберга были направлены на создание единой теории поля. В 1958 году он проквантовал нелинейное спинорное уравнение Иваненко (уравнение Иваненко-Гейзенберга). Немало его работ посвящено философским проблемам физики, в частности теории познания, где он стоял на позиции идеализма.

Из книги 100 великих нобелевских лауреатов автора Мусский Сергей Анатольевич

ВЕРНЕР ГЕЙЗЕНБЕРГ (1901- 1976)Гейзенберг был одним из самых молодых ученых, получивших Нобелевскую премию. Как сказал Н. Бор: «В этот период развития физической науки, который можно сравнить с чудесным приключением, Вернеру Гейзенбергу принадлежит выдающаяся роль».У

Из книги Большая Советская Энциклопедия (БЛ) автора БСЭ

Из книги Большая Советская Энциклопедия (БР) автора БСЭ

Из книги Большая Советская Энциклопедия (ВЕ) автора БСЭ

Из книги Большая Советская Энциклопедия (ЗО) автора БСЭ

автора БСЭ

Эгк Вернер Эгк (Egk) Вернер (р. 17.5.1901, Аухзесхейм, близ Аугсбурга), немецкий композитор и музыкальный общественный деятель (ФРГ), действительный член Баварской академии изящных искусств (1951). Музыкальное образование получил в Аугсбургской консерватории, совершенствовался в

Из книги 100 великих учёных автора Самин Дмитрий

ВЕРНЕР ГЕЙЗЕНБЕРГ (1901–1976)Вернер Гейзенберг был одним из самых молодых учёных, получивших Нобелевскую премию. Целеустремлённость и сильный дух соперничества воодушевили его на открытие одного из наиболее известных принципов науки - принципа неопределённости.Вернер

Из книги Афоризмы автора Ермишин Олег

Вернер Мич (р. 1936 г.) афорист Бог вездесущ. Не потому ли его так трудно найти?Брюзга – это человек, который доволен своим недовольством.В плохие времена мыслящие оказываются инакомыслящими.Важнейшим продуктом рыночного хозяйства является потребитель.Если ты приобрел

Из книги 100 великих людей автора Харт Майкл Х

46. ВЕРНЕР ГЕЙЗЕНБЕРГ (1901–1976) В 1932 году Нобелевская премия в области физики была присуждена Вернеру Карлу Гейзенбергу, немецкому физику, за его роль в создании квантовой механики - одного из наиболее важных достижений в истории науки. Механика - это раздел физики,

Из книги Соварь скептика, том 1 редакция 2 (2012 год) автора Кэрролл Роберт

ВЕРНЕР ЭРХАРД И ЭСТ «В жизни понимание – это утешительный приз». – Вернер Эрхард ЭСТ [Учебный тренинг Эрхарда или Эрхардовский Семинар–тренинг] был одним из наиболее успешных игроков движения развития личности. ЭСТ–тренинг является примером того, что психологи

Из книги Философия Науки. Хрестоматия автора Коллектив авторов

ВЕРНЕР ГЕЙЗЕНБЕРГ. (1901-1976) В. Гейзенберг - выдающийся немецкий физик, один из творцов квантовой механики и особого «неклассического» стиля мышления в физике. В свои молодые годы он окунулся в самую гущу глубинных исследований процессов микромира. Квантовые колебания

Вернер Гейзенберг

Гейзенберг (Хайзенберг) (Heisenberg) Вернер (1901-1976), немецкий физик-теоретик, один из создателей квантовой механики. Предложил (1925) матричный вариант квантовой механики; сформулировал (1927) принцип неопределенности; ввел концепцию матрицы рассеяния (1943). Труды по структуре атомного ядра, релятивистской квантовой механике, единой теории поля, теории ферромагнетизма, философии естествознания. Нобелевская премия (1932).

Вернер Гейзенберг (1901-1976) - немецкий физик-теоретик, один из создателей квантовой механики. Предложил матричный вариант квантовой механики, сформулировал принцип неопределенности, ввел концепцию матрицы рассеяния. Автор трудов по структуре атомного ядра, релятивистской квантовой механике, единой теории поля, теории ферромагнетизма, философии естествознания. Лауреат Нобелевской премии 1932 г.

Использованы сведения примечаний к кн.: Конт-Спонвиль Андре. Философский словарь / Пер. с фр. Е.В. Головиной. – М., 2012.

ГЕЙЗЕНБЕРГ Вернер (1901-1976) - немецкий физик-теоретик, один из создателей квантовой механики. Внес значительный вклад в развитие квантовой электродинамики, квантовой теории поля, теорию ядра, физику космических излучений, теорию элементарных частиц. Сформулировал соотношение неопределенностей, ограничившее применение классических понятий к микромиру. При решении ряда гносеологических проблем Гейзенберг делал идеалистические выводы, утверждая, в частности, что идея реальности в современной науке «расплывается» и заменяется математическими конструкциями. Соотношение неопределенностей явилось для него основой критики не только механического, но и вообще материалистического понимания причинности, отрицания правомерности четкого разграничения объективного и субъективного в теории и эксперименте. В последние годы жизни эволюционировал от неопозитивистских представлений, характерных для представителей так называемой копенгагенской школы, уделяя большое внимание философскому анализу диалектики части и целого, склонялся в ряде выводов к объективному идеализму в духе Платона.

Философский словарь. Под ред. И.Т. Фролова . М., 1991, с. 83-84.

Гейзенберг, Хайзенберг (Heisenberg) Вернер (5. 12. 1901, Вюрцбург,- 1.2.1976, Мюнхен), немецкий физик-теоретик, один из создателей квантовой механики. С 1941 года директор Института кайзера Вильгельма (с 1946 года - Институт Макса Планка). Нобелевская премия по физике (1932).

В статье «О квантово-теоретическом истолковании кинематических и механических соотношений» («Quantentheoretische Umdeutung der kinematischen und mechanischen Beziehungen», 1925) Гейзенберг построил исторически первый вариант квантовой механики - матричную механику. В основополагающей работе «О наглядном содержании квантово-теоретической кинематики и механики» («Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik», 1927) дал вывод соотношения неопределённостей, выражающего ограничения на употребление классических понятий в квантовой механике. Гейзенберг является одним ив авторов протонно-нейтронной модели строения атомного ядра (1932). В последние годы жизни Гейзенберг работал над проблемами квантовой теории поля. Значительное место в научном творчестве Гейзенберга занимают разработка философско-методологические проблем физики и её истории. С именем Гейзенберга связывается формулировка принципа наблюдаемости, введение понятия замкнутой физической теории, новая постановка проблемы причинности. Ряд методологических работ Гейзенберга посвящён исследованию связи современной физики с идеями античной философии, в которых он отдаёт предпочтение объективно-идеалистическим натурфилософским идеям Платона. Гейзенберг защищал субстанциальную трактовку энергии в духе энергетизма, считая, что все элементарные частицы «сделаны из энергии». В ряде работ Гейзенберг анализировал понятие простоты научной теории, различные аспекты концепции дополнительности, социокультурные проблемы науки.

Философский энциклопедический словарь. - М.: Советская энциклопедия. Гл. редакция: Л. Ф. Ильичёв , П. Н. Федосеев , С. М. Ковалёв, В. Г. Панов. 1983.

Сочинения: в рус. пер.; Физич. принципы квантовой теории, М.- Л., 1932; Филос. проблемы атомной физики, М., 1953; Физика и философия, М, 1963; Введение в единую полевую теорию элементарных частиц, М., 1968.

Литература: Кузнецов И. В., В чем прав и в чем ошибается Вернер Гейзенбург, «ВФ», 1958, №11; Омельяновский М.Э., Несколько замечаний по поводу статьи В. Г., там же, 1979, № 12, с. 44-48.

В сентябре 1911 года Вернера отдали в престижную гимназию. В 1920 году Гейзенберг поступил в Мюнхенский университет. Окончив его, Вернер был назначен ассистентом профессора Макса Борна в Геттингенском университетеПо теории квантов атом испускает свет, переходя из одного энергетического состояния в другое. А по теории Эйнштейна интенсивность света определенной частоты зависит от количества фотонов. Значит, можно было попытаться связать интенсивность излучения с вероятностью атомных переходов. Квантовые колебания электронов, уверял Гейзенберг, нужно представлять только с помощью математических соотношений. Надо лишь подобрать для этого подходящий математический аппарат. Молодой ученый выбрал матрицы. Выбор оказался удачным, и скоро его теория была готова. Работа Гейзенберга заложила основы науки о движении микроскопических частиц - квантовой механики.

Математические аппараты, которыми пользовались Гейзенберг и Дирак при разработке теорий атома в новой механике, были для большинства физиков и непривычны, и сложны. Не говоря уже о том, что никто из них, несмотря на все ухищрения, не мог свыкнуться с мыслью, что волна - это частица, а частица - волна.

В Копенгагене в сентябре 1926 года между Бором и Шредингером разгорелась дискуссия, в которой ни одна из сторон не добилась успеха. В итоге было признано, что никакую из существующих интерпретаций квантовой механики нельзя считать вполне приемлемой.

Гейзенберг в феврале 1927 года дал нужную интерпретацию, сформулировав принцип неопределенности и не сомневаясь в его правильности.

В феврале 1927 года он представил статью "О квантовотеоретическом истолковании кинематических и механических соотношений", посвященной принципу неопределенности.

Согласно принципу неопределенности, одновременное измерение двух сопряженных переменных, таких как положение и импульс движущейся частицы, неизбежно приводит к ограничению точности. Чем более точно измерено положение частицы, тем с меньшей точностью можно измерить ее импульс, и наоборот.

Гейзенберг заявил, что пока справедлива квантовая механика, принцип не-определенности не может быть нарушен.

Принцип неопределенности Гейзенберга вошел в логически замкнутую систему "копенгагенской интерпретации", которую Гейзенберг и Борн перед встречей ведущих физиков мира в октябре 1927 года объявили полностью завершенной и неизменяемой. Эта встреча, пятая из знаменитых Сольвеевских конгрессов, произошла всего несколько недель спустя после того, как Гейзенберг стал профессором теоретической физики в Лейпцигском университете. Будучи всего двадцати пяти лет от роду, он стал самым молодым профессором в Германии.

Гейзенберг впервые представил четко сформулированный вывод о наиболее глубоком следствии из принципа неопределенности, связанном с отношением к классическому понятию причинности.

Гейзенбергу и другим "копенгагенцам" потребовалось совсем немного времени, чтобы донести отстаиваемое ими учение до тех, кто не посещал европейских институтов. В Соединенных Штатах Гейзенберг нашел особенно благоприятную среду для обращения в свою веру новых сторонников. Во время совместного с Дираком кругосветного путешествия в 1929 году Гейзенберг прочел в Чикагском университете курс лекций по "копенгагенской доктрине". В 1933 году одновременно со Шредингером и Дираком его работы получили высшее признание - Нобелевскую премию.

С 1941 по 1945 год Гейзенберг был директором института физики кайзера Вильгельма и профессором Берлинского университета. Не раз отвергая предложения эмигрировать, он возглавил основные исследования по расщеплению урана, в которых был заинтересован Третий рейх.

После окончания войны ученый был арестован и отправлен в Англию.

В 1946 году Гейзенберг вернулся в Германию. Он становится директором Физического института и профессором Геттингенского университета. С 1958 года ученый являлся директором Физического университета и астрофизики, а также профессором Мюнхенского университета.

В последние годы усилия Гейзенберга были направлены на создание единой теории поля. В 1958 году он проквантовал нелинейное спинорное уравнение Иваненко (уравнение Иваненко - Гейзенберга).

Гейзенберг умер в своем доме в Мюнхене 1 февраля 1976 года от рака почки и желчного пузыря.

Перепечатывается с сайта http://100top.ru/encyclopedia/

ГЕЙЗЕНБЕРГ (Heisenberg) Вернер Карл (5 декабря 1901, Вюрцбург - 1 февраля 1976) - немецкий физик-теоретик, один из создателей квантовой механики. Окончил Мюнхенский (1923) и Геттингенский (1924) университеты. Профессор теоретической физики Лейпцигского университета (1927-41), директор Института физики кайзера Вильгельма и профессор Берлинского университета (1941-45). В 1941-45 - один из руководителей немецкого атомного проекта. В 1945 был интернирован в Англии. В 1946-58 - директор Физического института и профессор Гетгингенского университета. С 1958 - директор Института физики и астрофизики, профессор Мюнхенского университета.

Работал в области квантовой механики, квантовой электродинамики, релятивистской квантовой теории поля, теории ядра, магнетизма, физики космических лучей, теории элементарных частиц. В 1925 вместе с М. Борном и П. Йорданом разработал матричную механику - один из вариантов квантовой механики (Нобелевская премия, 1932). В 1927 сформулировал принцип неопределенности, ограничивающий применение к микрообъектам классических понятий. Один из создателей копенгагенской интерпретации квантовой механики. В 1950-60 развил нелинейную единую теорию поля. В Англии в 50-х гг. читал курс лекций по философским проблемам современной физики («Физика и философия», 1959).

Для философских воззрений Гейзенберга характерна широта интеллектуальных интересов. Размышляя об абстрактных построениях научных понятий, он стремился развить представление о непреходящей силе науки, которая заключается в особенном способе обобщения, позволяющем охватывать теоретической мыслью разнородные явления и давать этим явлениям единое объяснение. Убедительность научных достижений механики Ньютона коренится прежде всего в том, что эта теория позволила представить единую картину крайне различных явлений мира - от наглядных движений тел, повседневно наблюдаемых на Земле, до гармонического движения Космоса. Единство науки часто открывается непреднамеренно, просто в силу того, что люди задают вопросы природе, совершенствуя при этом технические средства и в особенности язык, на котором они формулируют эти вопросы. В изучении истории науки Гейзенберг призывал не ограничиваться историей открытий и наблюдений, но включать в рассмотрение историю развития понятий. Такие понятия классической механики, как масса, сила, скорость, место и время, представляют собой отвлечение от многих реальных особенностей изучаемых процессов. Содержание этих и других понятий строго определено, и в силу этого теоретические утверждения, в которые входят эти понятия, оказываются верными вне зависимости от указанных особенностей, а значит, верными на все времена и в любых самых отдаленных звездных системах.

Если естествознание открывает нам смысловое единство природы, то искусство побуждает нас к прояснению смысла нашего существования. В искусстве мы хотим отобразить миропонимание, общее всем людям Земли. Хотя мы и говорим, что наша высшая цель - создание новых форм и все завершается построением этих форм, тем не менее, такие формы могут явиться нам лишь при открытии нового содержания. Создавать новое искусство, по мысли Гейзенберга, - значит делать зримым и слышимым новое содержание, а не только изобретать новые формы. Гейзенберг был глубоко озабочен социальными событиями не только в своей стране, но и в мире в целом. Постепенно укореняется ощущение, что локальное нарушение в части мира может повредить всему существованию человечества. Он обращал внимание на то, что мы поставлены перед лицом огромных политических опасностей. Гейзенберг настойчиво искал пути выхода из трагической ситуации, в которой вынуждено жить человечество, и не только в самой науке, которая, по его словам, есть средство взаимопонимания народов, но и в сокровенных особенностях человеческого существа. Гейзенберг надеялся, что человек способен вникнуть не только умом, но и сердцем в ту отпугивающую пустоту и даль, куда нас завели техника и естествознание.

H. Ф. Овчинников

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин , А.А. Гусейнов , Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 494.

Далее читайте:

Ученые с мировым именем (биографический справочник).

Сочинения:

Gesammelte Werke, ser. A, pt. 1-3; ser. В, Springer, 1989; Philosophical Problems of Nuclear Science. N. Y., 1952; Physik und Philosophie. Fr./M., 1959. Физические принципы квантовой теории. Л.-М., 1931; Физика атомного ядра. М,-Л., 1947; Теория атомного ядра. М., 1953; Философские проблемы атомной физики. М., 1953; Нелинейная квантовая теория поля. М., 1959; Введение в единую полевую теорию элементарных частиц. М., 1968; Шаги за горизонт. М., 1987; Физика и философия. М., 1963; Физика и философия. Часть и целое. М., 1989.

Литература:

Овчинников Н. Ф. Ученый-мыслитель XX века. - В кн.: Гейзенберг В. Шаги за горизонт. М., 1987;

Кузнецов И. В., В чем прав и в чем ошибается Вернер Гейзенбург, «ВФ», 1958, №11;

Омельяновский М.Э., Несколько замечаний по поводу статьи Вернера Гейзенбурга, «ВФ», 1979, № 12, с. 44-48.

Ахутин А. В. Историко-научная концепция Гейзенберга. - «Вопросы истории естествознания и техники», 1988, №4, с. 69-83;

Ахутин А. В. Вернер Гейзенберг и философия,- В кн.: Гейзенберг В. Физика и философия. Часть и целое. М., 1989;

ffo/z N. Werner Heisenberg und die Philosophie. 2Aufl. В., 1968;

Weizsak- kerC. Л Werner Heisenberg. Munch.-Wien, 1977;

Cassidy D. C, Baker M. Werner Heisenberg: A Bibliography of his Writings. Berkeley, 1984;

Hempel H.-P. Natur und Geschichte: der Jahrhundertdialog zwischen Heidegger und Heisenberg. Fr./M., 1990;

Cassidy D. C. Uncertainty: the Life and Science of Werner Heisenberg. N. Y., 1992;

Werner Heisenberg: Physikerund Philosoph Heidelberg, 1993.

Гейзенберг был членом Саксонской академии наук в Лейпциге .

Знаменитые высказывания

  • Первый глоток из стакана естествознания делает атеистом, но на дне стакана ожидает Бог.
  • Только немногие знают, как много надо знать, чтобы понять, как мало знаешь.
  • Физика рождается в общении.
  • Сложнее всего говорить обычным языком о квантовой теории. Непонятно, какие слова нужно употреблять вместо соответствующих математических символов. Ясно только одно: понятия обычного языка не подходят для описания строения атома.
  • Красота природы отражается в красоте наук о природе.

Сочинения

  • Физические принципы квантовой теории. М.-Л., 1932.
  • Физика атомного ядра. М.-Л., 1947.
  • Теория атомного ядра. М., 1953.
  • Философские проблемы современной атомной физики. М., 1953.
  • Введение в единую полевую теорию элементарных частиц. М., 1968.
  • Шаги за горизонт. М.: Прогресс, 1987.
  • Физика и философия. Часть и целое . М.: Наука, 1990.

Ссылки

  • Гейзенберг, Вернер Карл в библиотеке Максима Мошкова

Wikimedia Foundation . 2010 .

Смотреть что такое "Вернер Гейзенберг" в других словарях:

    Вернер Карл Гейзенберг Werner Karl Heisenberg … Википедия

    Вернер Гейзенберг Сольвеевский конгресс Вернер Карл Гейзенберг (нем. Werner Heisenberg; 5 декабря 1901, Вюрцбург 1 февраля 1976, Мюнхен) немецкий физик, создатель «матричной квантовой механики Гейзенберга», лауреат Нобелевской премии по физике … Википедия

    Хайзенберг (Heisenberg) Вер нер (5. 12. 1901, Вюрцбург, 1.2.1976, Мюнхен), нем. физик теоретик, один из создателей квантовой механики. С 1941 директор Ин та кайзера Вильгельма (с1946 Ин т Макса Планка). Нобелевская пр. по физике (1932).… … Философская энциклопедия

    - (нем. Heisenberg) фамилия: Гейзенберг, Вернер Карл немецкий физик теоретик Гейзенберг, Август немецкий историк и филолог, византинист … Википедия

    ГЕЙЗЕНБЕРГ (Хайзенберг) (Heisenberg) Вернер (1901 76) немецкий физик теоретик, один из создателей квантовой механики. Предложил (1925) матричный вариант квантовой механики; сформулировал (1927) принцип неопределенности; ввел концепцию матрицы… … Большой Энциклопедический словарь

    Гейзенберг, Хайзенберг (Heisenberg) Вернер (р. 5.12.1901, Вюрцбург), немецкий физик, один из создателей квантовой механики. В 1923 окончил Мюнхенский университет, где слушал лекции А. Зоммерфельда. В 1923≈27 ассистент М. Борна. В 1927≈41… … Большая советская энциклопедия

Вернер ГЕЙЗЕНБЕРГ (Heisenberg)

(5.XII. 1901 - 1.II. 1976)

Немецкий физик Вернер-Карл Гейзенберг родился в Дуйсбурге в семье Августа Гейзенберга, профессора древнегреческого языка Мюнхенского университета, и урожденной Анни Веклейн.
Детские годы Гейзенберга прошли в Дуйсбурге, где он учился в гимназии Максимилиана. В 1920 г. он поступил в Мюнхенский университет, где изучал физику под руководством знаменитого Арнольда Зоммерфельда.
Гейзенберг был выдающимся студентом и уже в 1923 г. защитил докторскую диссертацию. Она была посвящена некоторым аспектам квантовой теории. Следующий год он провел в Геттингенском университете ассистентом у Макса Борна, а затем, получив стипендию Рокфеллеровского фонда, отправился к Нильсу Бору в Копенгаген, где пробыл до 1927 г., если не считать продолжительных визитов в Геттинген.
Наибольший интерес у Гейзенберга вызывали нерешенные проблемы строения атома и все возраставшее несоответствие модели, предложенной Бором, экспериментальным и теоретическим данным. В 1925 г., во время кратковременного отдыха после приступа сенной лихорадки Гейзенберг в порыве вдохновения увидел совершенно новый подход, позволяющий применить квантовую теорию к разрешению всех трудностей в модели Бора.
Через несколько недель он изложил свои идеи в статье. Макс Планк положил начало квантовой теории в 1900 г. Он объяснил соотношение между температурой тела и испускаемым им излучением, выдвинув гипотезу, согласно которой энергия испускается малыми дискретными порциями. Энергия каждой такой порции, или кванта , как предложил называть ее Альберт Эйнштейн, пропорциональна частоте излучения. Понятие кванта энергии было радикально новым, поскольку еще в прошлом столетии было доказано, что излучение, например свет, распространяется в виде непрерывных волн.
В 1905 г. Эйнштейн воспользовался квантами для объяснения фотоэлектрического эффекта - испускания электронов металлической поверхностью, освещаемой ультрафиолетовым светом. Более интенсивное излучение приводит к увеличению числа испущенных поверхностью электронов, но не их энергии.
Эйнштейн высказал предположение, согласно которому каждый квант (света или любой другой лучистой энергии), получивший впоследствии название фотона, передает энергию одному электрону. Некоторая доля энергии затрачивается на высвобождение электрона, а остальная переходит в кинетическую энергию, т.е. проявляется в виде скорости электрона. Поток падающего на поверхность металла более интенсивного излучения содержит большее число фотонов, которые высвобождают и большее число электронов, но энергия каждого фотона остается фиксированной, чем и устанавливается предел скорости электронов.
Около 1913 г. Бор предложил свою модель атома : вокруг плотного центрального ядра по орбитам различного радиуса обращаются электроны. Используя квантовую теорию, он показал, что атом, возбужденный при горении вещества или электрическим разрядом, излучает энергию на некоторых характерных частотах. По Бору, разрешались только вполне определенные электронные орбиты. Когда электрон "перепрыгивает" с одной орбиты на другую, с меньшей энергией, излишек ее преобразуется в квант испускаемого излучения с частотой, определяемой, по теории Планка, разностью энергий между уровнями. Модель Бора сначала пользовалась большим успехом, но вскоре в нее понадобилось вводить поправки для устранения расхождений между теорией и экспериментальными данными. Многие ученые указывали на то, что, несмотря на кажущуюся простоту, она не может служить основой для последовательного подхода к решению многих задач квантовой физики.
Блестящая идея, пришедшая в голову Гейзенберга, состояла в том, чтобы рассматривать квантовые события как явления на совершенно ином уровне, чем в классической физике. Он подошел к ним как к явлениям, не допускающим точного наглядного представления, например с помощью картины обращающихся по орбитам электронов. Вместо наглядных образов Гейзенберг предложил абстрактное, чисто математическое представление, основанное на использовании "принципиально наблюдаемых " величин, таких, как частоты спектральных линий. В выведенные Гейзенбергом уравнения входили таблицы наблюдаемых величин: частот, пространственных координат и импульсов. Он указал правила, позволяющие производить над этими таблицами различные математические операции. Борн распознал в таблицах Гейзенберга давно известные математикам матрицы и показал, что операции над ними можно производить по правилам матричной алгебры - хорошо разработанной области математики, но малоизвестной в то время физикам.
Борн, его студент Паскуаль Джордан и Гейзенберг развили эту концепцию в матричную механику и создали метод, позволяющий применять квантовую теорию в исследованиях структуры атома. Через несколько месяцев Эрвин Шредингер предложил другую формулировку квантовой механики, описывающей эти явления на языке волновых понятий.
Подход Шредингера берет начало в работах Луи де Бройля, высказавшего гипотезу о так называемых волнах материи : подобно тому, как свет, традиционно считавшийся волнами, может обладать корпускулярными свойствами (фотоны, или кванты излучения), частицы могут обладать волновыми свойствами. Позднее было доказано, что матричная и волновая механики, по существу, эквивалентны. Взятые вместе, они образуют то, что ныне называется квантовой механикой. Вскоре квантовая механика была расширена Полем Дираком, включившим в волновое уравнение элементы теории относительности Эйнштейна.
В 1927 г. Гейзенберг стал профессором теоретической физики Лейпцигского университета. В том же году он опубликовал работу, содержащую формулировку принципа неопределенности. Свой принцип Гейзенберг вывел как следствие умножения матриц. При умножении обычных чисел порядок сомножителей несуществен, а при умножении матриц он очень важен. При вычислении операции умножения над некоторыми парами величин, например импульсом частицы и ее пространственной координатой, ответ в матричной механике будет зависеть от того, какая из величин (импульс или пространственная координата ) стоит на первом месте. Понятие упорядоченности величин оказалось весьма глубоким. Оно означало, что точное определение одной величины влияет на значение другой, поэтому значения двух величин одновременно невозможно знать с абсолютной точностью.
Физические величины обычно становятся известны в результате измерений. Каждое измерение содержит некоторую погрешность, но экспериментатор всегда надеется уменьшить ее с помощью лучшего оборудования или более совершенной методики. Принцип неопределенности устанавливает предел для точности измерений. Он утверждает, что произведение погрешностей измерений двух величин не может быть меньше некоторого фиксированного числа - постоянной Планка. Это число буквально пронизывает всю квантовую теорию, поскольку энергия кванта излучения равна произведению постоянной Планка и частоты.
Когда погрешности измерения обеих величин относительно велики, как в повседневной жизни, принцип неопределенности малоэффективен, но на атомном уровне он очень важен. Например, чем точнее может быть зафиксировано положение электрона в пространстве, тем более неопределенной становится его скорость. Даже теоретически электрону нельзя приписать одновременно абсолютно точно известную пространственную координату и абсолютно точно известную скорость. Гейзенберг предложил следующий поясняющий пример: чтобы "увидеть" электрон в гипотетический сверхмикроскоп, на него следует направить "свет" с длиной волны, сравнимой с размерами электрона.
Из квантовой теории следует, что квант такого света должен обладать столь большой энергией, что при столкновении с электроном он отбросит его в сторону. Наблюдение вносит возмущения и изменения в то, что наблюдается.
Согласно "копенгагенской" интерпретации (названа так в честь Нильса Бора, интенсивно занимавшегося этой проблемой в Копенгагене), получившей наибольшее признание в современной физике, принцип неопределенности ограничивает квантово-механическое описание утверждениями об относительных вероятностях исходов экспериментов и не предсказывает точные численные значения измеряемых физических величин.
Еще одним успехом новой квантовой механики стало предсказание существования двух форм молекулы водорода. В обычном водороде каждая молекула состоит из двух связанных атомов (ядро каждого атома состоит из одного протона). Предполагается, что ядро вращается вокруг собственной оси, как волчок (квантовая механика отвергает столь простую картину, но сохраняет такое понятие, как спин, или угловой момент, характеризующий вращение ядра вокруг собственной оси).
Поскольку протон несет положительный электрический заряд, его спин имеет характер электрического тока и порождает магнитное поле, взаимодействующее с другими заряженными частицами и магнитными полями. В одной форме молекулы водорода спины двух ядер направлены одинаково (по часовой стрелке или против нее). В другой же спины ядер направлены в противоположные стороны. Вскоре это было доказано благодаря наблюдениям линейчатых спектров. Так как относительная ориентация спинов влияет на положение энергетических уровней, переходы между слегка различными уровнями сопровождаются излучением с различными частотами. Это экспериментальное подтверждение предположения Гейзенберга подкрепило его теоретические исследования.
В 1933 г. Гейзенбергу была вручена Нобелевская премия по физике 1932 г. "за создание квантовой механики, применение которой привело помимо прочего к открытию аллотропических форм водорода ".
В Лейпцигском университете Гейзенберга оставался до 1941 г. За время своего пребывания в Лейпциге он выполнил важные работы по ферромагнетизму (виду магнетизма, свойственному таким сильно магнитным материалам, как железо) и квантовой электродинамике (последние - в соавторстве с Вольфгангом Паули). Сразу же после открытия Джеймсом Чедвиком нейтрона в 1932 г. Гейзенберг высказал гипотезу, согласно которой атомные ядра должны состоять из протонов и нейтронов , удерживаемых силами ядерного обменного взаимодействия .
В 1941 г. Гейзенберг был назначен профессором физики Берлинского университета и директором Физического института кайзера Вильгельма. Хотя он не был сторонником нацистского режима, он, тем не менее возглавил германский проект по атомным исследованиям. Американские физики, знавшие способности Гейзенберга, опасались, что он может создать для Германии бомбу, над которой они работали в США.
Гейзенберг надеялся получить ядерную энергию, но некомпетентность правительства, его недальновидность, изгнание ученых-евреев и отчужденность со стороны многих других создали настолько серьезные препятствия на пути исследований, что участники германского атомного проекта не смогли построить даже ядерный реактор.
После окончания войны Гейзенберг в числе других немецких физиков был взят в плен и интернирован в Великобританию. В Германию он вернулся в 1946 г. и занял пост профессора физики Геттингенского университета и директора Института Макса Планка (бывшего Физического института кайзера Вильгельма). Исполняя эти высокие обязанности, Гейзенберг участвовал в программе получения ядерной энергии. Он выступал с публичной критикой канцлера ФРГ Конрада Аденауэра за неадекватное финансирование ядерной технологии правительством. Гейзенберг был среди тех ученых, которые предупреждали мир об опасности ядерной войны. Он принадлежал к числу противников вооружения бундесвера ядерным оружием.
Гейзенберг выполнил также ряд исследований по теории гидродинамической турбулентности, сверхпроводимости и теории элементарных частиц.
В 1937 г. Гейзенберг вступил в брак с Элизабет Шумахер. У них родилось четыре дочери и трое сыновей. Гейзенберг был большим любителем музыки и тонким пианистом. Он часто играл в камерных ансамблях с членами своей семьи. Гейзенберг скончался 1 февраля 1976 г. в Мюнхене. Гейзенберг был награжден золотой медалью Барнарда "За выдающиеся научные заслуги" Колумбийского университета (1929), золотой медалью Маттеуччи Национальной академии наук Италии (1929), медалью Макса Планка Германского физического общества (1933), бронзовой медалью Национальной академии наук США (1964), международной золотой медалью Нильса Бора Датского общества инженеров-строителей, электриков и механиков (1970).
Он был удостоен почетных степеней университетов Брюсселя, Будапешта, Копенгагена, Загреба и Технического университета в Карлсруэ, состоял членом академий наук Норвегии, Геттингена, Испании, Германии и Румынии, а также Лондонского королевского общества, Американского философского общества, Нью-Йоркской академии наук. Королевской ирландской академии и Японской академии.

Источник информации: "Лауреаты Нобелевской премии: Энциклопедия". Пер. с англ. - М.: Прогресс, 1992.

Гейзенберг был членом Саксонской академии наук в Лейпциге .

Знаменитые высказывания

  • Первый глоток из стакана естествознания делает атеистом, но на дне стакана ожидает Бог.
  • Только немногие знают, как много надо знать, чтобы понять, как мало знаешь.
  • Физика рождается в общении.
  • Сложнее всего говорить обычным языком о квантовой теории. Непонятно, какие слова нужно употреблять вместо соответствующих математических символов. Ясно только одно: понятия обычного языка не подходят для описания строения атома.
  • Красота природы отражается в красоте наук о природе.

Сочинения

  • Физические принципы квантовой теории. М.-Л., 1932.
  • Физика атомного ядра. М.-Л., 1947.
  • Теория атомного ядра. М., 1953.
  • Философские проблемы современной атомной физики. М., 1953.
  • Введение в единую полевую теорию элементарных частиц. М., 1968.
  • Шаги за горизонт. М.: Прогресс, 1987.
  • Физика и философия. Часть и целое . М.: Наука, 1990.

Ссылки

  • Гейзенберг, Вернер Карл в библиотеке Максима Мошкова

Другие книги схожей тематики:

    Автор Книга Описание Год Цена Тип книги
    А.С.Давыдов Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. В книге рассматривается большой круг вопросов теории атомного ядра, относящихсяк явлениям, протекающим при… - ЁЁ Медиа, - 1938
    1278 бумажная книга
    А.С.Давыдов В книге рассматривается большой круг вопросов теории атомного ядра, относящихся к явлениям, протекающим при энергиях, не превышающих сотни МэВ. В частности, излагаются: модель ядерных оболочек… - ЁЁ Медиа, (формат: 60x90/16, 296 стр.) 1938
    1603 бумажная книга
    В. Гейзенберг Прижизненное издание. Москва, 1953 год. Издательство иностранной литературы. Издательский переплет. Сохранность хорошая. Книга посвящена ряду теоретических вопросов, связанных со строением атомного… - Издательство иностранной литературы, (формат: 60x92/16, 156 стр.) 1953
    700 бумажная книга
    В.Г.Соловьев Теория атомного ядра. Ядерные модели - Энергоиздат, (формат: 60x90/16, 296 стр.) 1981
    370 бумажная книга
    Г. Н. Березовский В основу настоящей книги положена Новая кинетическая теория гравитации. Выявлены закономерности самосборки атомного ядра, разработаны структуры каждого ядра элементов периодической системы не… - Ленанд, (формат: 60x90/16, 384 стр.) Relata Refero 2015
    571 бумажная книга
    Березовский Г.Н. В основу настоящей книги положена Новая кинетическая теория гравитации. Выявлены закономерности самосборки атомного ядра, разработаны структуры каждого ядра элементов периодической системы не… - URSS, (формат: 60x90/16, 296 стр.) Relata Refero 2015
    426 бумажная книга
    Г. Н. Березовский В основу настоящей книги положена Новая кинетическая теория гравитации. Выявлены закономерности самосборки атомного ядра, разработаны структуры каждого ядра элементов периодической системы не… - ЛЕНАНД, (формат: 60x90/16, 296 стр.) Relata Refero 2015
    534 бумажная книга
    М. А. Михайлов В пособии рассмотрены основные понятия и законы физики атомного ядра и элементарных частиц. В первой части изложен ряд общих вопросов, а также вопросы, касающиеся строения и свойств атомного ядра… - Прометей, (формат: 60x92/16, 156 стр.) электронная книга 2011
    120 электронная книга
    Михайлов М. А. В пособии рассмотрены основные понятия и законы физики атомного ядра и элементарных частиц. В первой части изложен ряд общих вопросов, а также вопросы, касающиеся строения и свойств атомного ядра… - Прометей, (формат: 60x92/16, 156 стр.) 2011
    285 бумажная книга
    Михайлов М. А. В пособии рассмотрены основные понятия и законы физики атомного ядра и элементарных частиц. В первой части изложен ряд общих вопросов, а также вопросы, касающиеся строения и свойств атомного ядра… - Прометей, (формат: 60x90/16, 296 стр.) 2011
    260 бумажная книга
    О. А. Барсуков Обобщена информация о фундаментальных проблемах физики атомного ядра. Теория процессов на ядерном уровне излагается в сочетании с данными наблюдений, в значительной мере получаемых с помощью ядерных… - Издательская фирма"Физико-математическая литература", электронная книга 2011
    1511 электронная книга
    О.А. Барсуков Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Обобщена информация о фундаментальных проблемах физики атомного ядра. Теория процессов на ядерном уровне… - ФМЛ, - 2011
    1500 бумажная книга
    О. А. Барсуков Обобщена информация о фундаментальных проблемах физики атомного ядра. Теория процессов на ядерном уровне излагается в сочетании с данными наблюдений, в значительной мере получаемых с помощью ядерных… - ФИЗМАТЛИТ, (формат: 70x100/16, 562 стр.) Фундаментальная и прикладная физика 2011
    1500 бумажная книга
    Барсуков О.А. Обобщена информация о фундаментальных проблемах физики атомного ядра. Теория процессов на ядерном уровне излагается в сочетании с данными наблюдений, в значительной мере получаемых с помощью ядерных… - Физматлит, (формат: 60x90/16, 296 стр.) - 2011
    1870 бумажная книга
    О. А. Барсуков Обобщена информация о фундаментальных проблемах физики атомного ядра. Теория процессов на ядерном уровне излагается в сочетании с данными наблюдений, в значительной мере получаемых с помощью ядерных… - ФИЗМАТЛИТ, (формат: 60x90/16, 296 стр.) - Ядерная физика Атомное ядро · Радиоактивный распад · Ядерная реакция Основные термины Атомное ядро · Изотопы · Изобары · Период полураспада · М … Википедия

    Теория многих тел - Теория многих тел область физики, в которой исследуются и описываются коллективные поведение многочастичных систем взаимодействующих частиц. В общих чертах, теория многих тел имеет дело с физическими эффектами и явлениями, которые… … Википедия

    Теория случайных матриц - Теория случайных матриц раздел математической статистики, изучающий свойства ансамблей матриц, элементы которых распределены случайным образом. Как правило задаётся закон распределения элементов. При этом изучается статистика собственных… … Википедия

    Ядра атомного деление - процесс расщепления атомного ядра на несколько более лёгких ядер «осколков», наиболее часто на 2 осколка, близких по массе. В 1938 немецкие учёные О. Ган и Ф. Штрасман установили, что при бомбардировке Урана нейтронами образуются ядра… …

    Теория оболочечного строения ядра - одна из ядерно физических моделей, объясняющая структуру атомного ядра. Она аналогична теории оболочечного строения атома. В оболочечной модели атома электроны наполняют электронные оболочки, и, как только оболочка заполнена, значительно… … Википедия

    Квантовая теория поля - Квантовая теория поля квантовая теория систем с бесконечным числом степеней свободы (полей физических (См. Поля физические)). К. т. п., возникшая как обобщение квантовой механики (См. Квантовая механика) в связи с проблемой описания… … Большая советская энциклопедия

    ДЕФОРМИРОВАННЫЕ ЯДРА - атомные ядра, форма к рых в основном состоянии отличается от сферической. Они имеют аномально большие электрич. квадрупольные моменты Q в 30 раз больше предсказываемых одночастичной оболочечной моделью ядра. Д. я. были открыты в 1949 в результате … Физическая энциклопедия

    Оболочечная модель ядра

    Оболочная модель ядра - В ядерной физике, теория оболочечного строения ядра модель, объясняющая структуру атомного ядра. Она аналогична теории оболочечного строения атома. В оболочечной модели атома электроны наполняют электронные оболочки, и, как только оболочка… … Википедия