Задания с производной в егэ. Производная функции. Геометрический смысл производной. п равила вычисления производных

Производной функции $y = f(x)$ в данной точке $х_0$ называют предел отношения приращения функции к соответствующему приращению его аргумента при условии, что последнее стремится к нулю:

$f"(x_0)={lim}↙{△x→0}{△f(x_0)}/{△x}$

Дифференцированием называют операцию нахождения производной.

Таблица производных некоторых элементарных функций

Функция Производная
$c$ $0$
$x$ $1$
$x^n$ $nx^{n-1}$
${1}/{x}$ $-{1}/{x^2}$
$√x$ ${1}/{2√x}$
$e^x$ $e^x$
$lnx$ ${1}/{x}$
$sinx$ $cosx$
$cosx$ $-sinx$
$tgx$ ${1}/{cos^2x}$
$ctgx$ $-{1}/{sin^2x}$

Основные правила дифференцирования

1. Производная суммы (разности) равна сумме (разности) производных

$(f(x) ± g(x))"= f"(x)±g"(x)$

Найти производную функции $f(x)=3x^5-cosx+{1}/{x}$

Производная суммы (разности) равна сумме (разности) производных.

$f"(x) = (3x^5)"-(cos x)" + ({1}/{x})" = 15x^4 + sinx - {1}/{x^2}$

2. Производная произведения

$(f(x) · g(x))"= f"(x) · g(x)+ f(x) · g(x)"$

Найти производную $f(x)=4x·cosx$

$f"(x)=(4x)"·cosx+4x·(cosx)"=4·cosx-4x·sinx$

3. Производная частного

$({f(x)}/{g(x)})"={f"(x)·g(x)-f(x)·g(x)"}/{g^2(x)}$

Найти производную $f(x)={5x^5}/{e^x}$

$f"(x)={(5x^5)"·e^x-5x^5·(e^x)"}/{(e^x)^2}={25x^4·e^x-5x^5·e^x}/{(e^x)^2}$

4. Производная сложной функции равна произведению производной внешней функции на производную внутренней функции

$f(g(x))"=f"(g(x))·g"(x)$

$f"(x)=cos"(5x)·(5x)"=-sin(5x)·5= -5sin(5x)$

Физический смысл производной

Если материальная точка движется прямолинейно и ее координата изменяется в зависимости от времени по закону $x(t)$, то мгновенная скорость данной точки равна производной функции.

Точка движется по координатной прямой согласно закону $x(t)= 1,5t^2-3t + 7$, где $x(t)$ - координата в момент времени $t$. В какой момент времени скорость точки будет равна $12$?

1. Скорость – это производная от $x(t)$, поэтому найдем производную заданной функции

$v(t) = x"(t) = 1,5·2t -3 = 3t -3$

2. Чтобы найти, в какой момент времени $t$ скорость была равна $12$, составим и решим уравнение:

Геометрический смысл производной

Напомним, что уравнение прямой, не параллельной осям координат, можно записать в виде $y = kx + b$, где $k$ – угловой коэффициент прямой. Коэффициент $k$ равен тангенсу угла наклона между прямой и положительным направлением оси $Ох$.

Производная функции $f(x)$ в точке $х_0$ равна угловому коэффициенту $k$ касательной к графику в данной точке:

Следовательно, можем составить общее равенство:

$f"(x_0) = k = tgα$

На рисунке касательная к функции $f(x)$ возрастает, следовательно, коэффициент $k > 0$. Так как $k > 0$, то $f"(x_0) = tgα > 0$. Угол $α$ между касательной и положительным направлением $Ох$ острый.

На рисунке касательная к функции $f(x)$ убывает, следовательно, коэффициент $k < 0$, следовательно, $f"(x_0) = tgα < 0$. Угол $α$ между касательной и положительным направлением оси $Ох$ тупой.

На рисунке касательная к функции $f(x)$ параллельна оси $Ох$, следовательно, коэффициент $k = 0$, следовательно, $f"(x_0) = tg α = 0$. Точка $x_0$, в которой $f "(x_0) = 0$, называется экстремумом .

На рисунке изображён график функции $y=f(x)$ и касательная к этому графику, проведённая в точке с абсциссой $x_0$. Найдите значение производной функции $f(x)$ в точке $x_0$.

Касательная к графику возрастает, следовательно, $f"(x_0) = tg α > 0$

Для того, чтобы найти $f"(x_0)$, найдем тангенс угла наклона между касательной и положительным направлением оси $Ох$. Для этого достроим касательную до треугольника $АВС$.

Найдем тангенс угла $ВАС$. (Тангенсом острого угла в прямоугольном треугольнике называется отношение противолежащего катета к прилежащему катету.)

$tg BAC = {BC}/{AC} = {3}/{12}= {1}/{4}=0,25$

$f"(x_0) = tg ВАС = 0,25$

Ответ: $0,25$

Производная так же применяется для нахождения промежутков возрастания и убывания функции:

Если $f"(x) > 0$ на промежутке, то функция $f(x)$ возрастает на этом промежутке.

Если $f"(x) < 0$ на промежутке, то функция $f(x)$ убывает на этом промежутке.

На рисунке изображен график функции $y = f(x)$. Найдите среди точек $х_1,х_2,х_3…х_7$ те точки, в которых производная функции отрицательна.

В ответ запишите количество данных точек.

Производная функции - одна из сложных тем в школьной программе. Не каждый выпускник ответит на вопрос, что такое производная.

В этой статье просто и понятно рассказано о том, что такое производная и для чего она нужна . Мы не будем сейчас стремиться к математической строгости изложения. Самое главное - понять смысл.

Запомним определение:

Производная - это скорость изменения функции.

На рисунке - графики трех функций. Как вы думаете, какая из них быстрее растет?

Ответ очевиден - третья. У нее самая большая скорость изменения, то есть самая большая производная.

Вот другой пример.

Костя, Гриша и Матвей одновременно устроились на работу. Посмотрим, как менялся их доход в течение года:

На графике сразу все видно, не правда ли? Доход Кости за полгода вырос больше чем в два раза. И у Гриши доход тоже вырос, но совсем чуть-чуть. А доход Матвея уменьшился до нуля. Стартовые условия одинаковые, а скорость изменения функции, то есть производная , - разная. Что касается Матвея - у его дохода производная вообще отрицательна.

Интуитивно мы без труда оцениваем скорость изменения функции. Но как же это делаем?

На самом деле мы смотрим, насколько круто идет вверх (или вниз) график функции. Другими словами - насколько быстро меняется у с изменением х. Очевидно, что одна и та же функция в разных точках может иметь разное значение производной - то есть может меняться быстрее или медленнее.

Производная функции обозначается .

Покажем, как найти с помощью графика.

Нарисован график некоторой функции . Возьмем на нем точку с абсциссой . Проведём в этой точке касательную к графику функции. Мы хотим оценить, насколько круто вверх идет график функции. Удобная величина для этого - тангенс угла наклона касательной .

Производная функции в точке равна тангенсу угла наклона касательной, проведённой к графику функции в этой точке.

Обратите внимание - в качестве угла наклона касательной мы берем угол между касательной и положительным направлением оси .

Иногда учащиеся спрашивают, что такое касательная к графику функции. Это прямая, имеющая на данном участке единственную общую точку с графиком, причем так, как показано на нашем рисунке. Похоже на касательную к окружности.

Найдем . Мы помним, что тангенс острого угла в прямоугольном треугольнике равен отношению противолежащего катета к прилежащему. Из треугольника :

Мы нашли производную с помощью графика, даже не зная формулу функции. Такие задачи часто встречаются в ЕГЭ по математике под номером .

Есть и другое важное соотношение. Вспомним, что прямая задается уравнением

Величина в этом уравнении называется угловым коэффициентом прямой . Она равна тангенсу угла наклона прямой к оси .

.

Мы получаем, что

Запомним эту формулу. Она выражает геометрический смысл производной.

Производная функции в точке равна угловому коэффициенту касательной, проведенной к графику функции в этой точке.

Другими словами, производная равна тангенсу угла наклона касательной.

Мы уже сказали, что у одной и той же функции в разных точках может быть разная производная. Посмотрим, как же связана производная с поведением функции.

Нарисуем график некоторой функции . Пусть на одних участках эта функция возрастает, на других - убывает, причем с разной скоростью. И пусть у этой функции будут точки максимума и минимума.

В точке функция возрастает. Касательная к графику, проведенная в точке , образует острый угол с положительным направлением оси . Значит, в точке производная положительна.

В точке наша функция убывает. Касательная в этой точке образует тупой угол с положительным направлением оси . Поскольку тангенс тупого угла отрицателен, в точке производная отрицательна.

Вот что получается:

Если функция возрастает, ее производная положительна.

Если убывает, ее производная отрицательна.

А что же будет в точках максимума и минимума? Мы видим, что в точках (точка максимума) и (точка минимума) касательная горизонтальна. Следовательно, тангенс угла наклона касательной в этих точках равен нулю, и производная тоже равна нулю.

Точка - точка максимума. В этой точке возрастание функции сменяется убыванием. Следовательно, знак производной меняется в точке с «плюса» на «минус».

В точке - точке минимума - производная тоже равна нулю, но ее знак меняется с «минуса» на «плюс».

Вывод: с помощью производной можно узнать о поведении функции всё, что нас интересует.

Если производная положительна, то функция возрастает.

Если производная отрицательная, то функция убывает.

В точке максимума производная равна нулю и меняет знак с «плюса» на «минус».

В точке минимума производная тоже равна нулю и меняет знак с «минуса» на «плюс».

Запишем эти выводы в виде таблицы:

возрастает точка максимума убывает точка минимума возрастает
+ 0 - 0 +

Сделаем два небольших уточнения. Одно из них понадобится вам при решении задач ЕГЭ. Другое - на первом курсе, при более серьезном изучении функций и производных.

Возможен случай, когда производная функции в какой-либо точке равна нулю, но ни максимума, ни минимума у функции в этой точке нет. Это так называемая :

В точке касательная к графику горизонтальна, и производная равна нулю. Однако до точки функция возрастала - и после точки продолжает возрастать. Знак производной не меняется - она как была положительной, так и осталась.

Бывает и так, что в точке максимума или минимума производная не существует. На графике это соответствует резкому излому, когда касательную в данной точке провести невозможно.

А как найти производную, если функция задана не графиком, а формулой? В этом случае применяется

В задании №13 ЕГЭ по математике базового уровня придется продемонстрировать умения и знания одного из понятий поведения функции: производных в точке или скоростей возрастания или убывания. Теория к этому заданию будет добавлена чуть позже, но это не помешает нам подробно разобрать несколько типовых вариантов.

Разбор типовых вариантов заданий №14 ЕГЭ по математике базового уровня

Вариант 14МБ1

На графике изображена зависимость температуры от времени в процессе разогрева двигателя легкового автомобиля. На горизонтальной оси отмечено время в минутах, прошедшее с момента запуска двигателя; на вертикальной оси – температура двигателя в градусах Цельсия.

Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику процесса разогрева двигателя на этом интервале.

В таблице под каждой буквой укажите соответствующий номер.

Алгоритм выполнения:
  1. Выбрать интервал времени, на котором температура падала.
  2. Приложить линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.
Решение:

Выберем интервал времени, на котором температура падала. Этот участок видно не вооруженным глазом, он начинается в 8 мин от момента запуска двигателя.

Приложим линейку к 30°С и определить интервал времени, на котором температура была ниже 30°С.

Ниже линейки окажется участок, соответствующий интервалу времени 0 – 1 мин.

С помощью карандаша и линейки найдем на каком интервале времени температура находилась в пределах от 40°С до 80°С.

Опустим из точек, соответствующих 40°С и 80°С перпендикуляры на график, а из полученных точек опустим перпендикуляры на ось времени.

Видим, что этому температурному интервалу соответствует интервал времени 3 – 6,5 мин. То есть из приведенных в условии 3 – 6 мин.

Методом исключения выберем недостающий вариант ответа.

Вариант 14МБ2

Решение:

Проанализируем график функции А. Если Функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.

Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. В точке максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 3.

Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 4. Точка максимума функции x=-2, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.

Сначала функция В возрастает, т.е. производная положительна. Этому соответствуют графики производных 2 и 3. Точка максимума функции x = 1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.

Методом исключения можем определить, что графику функции Г соответствует график производной под номером 1.

Ответ: 3421.

Вариант 14МБ3

Алгоритм выполнения для каждой из функций:
  1. Определить промежутки возрастания и убывания функций.
  2. Определить точки максимума и точки минимума функций.
  3. Сделать выводы, поставить в соответствие предложенные графики.
Решение:

Проанализируем график функции А.

Если функция возрастает, то производная положительна и наоборот. Производная функции равна нулю в точках экстремума.

Точка экстремума – это точка, в которой достигается максимальное или минимальное значение функции.

Сначала функция А возрастает, т.е. производная положительна. Этому соответствуют графики производных 3 и 4. В точке максимума функции x=0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 4.

Проанализируем график функции Б.

Сначала функция Б убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x=-1, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 2.

Проанализируем график функции В.

Сначала функция В убывает, т.е. производная отрицательна. Этому соответствуют графики производных 1 и 2. Точка минимума функции x = 0, то есть в данной точке производная должна быть равна нулю. Этому условию соответствует график под номером 1.

Методом исключения можем определить, что графику функции Г соответствует график производной под номером 3.

Ответ: 4213.

Вариант 14МБ4

На рисунке изображен график функции и касательные, проведённые к нему в точках с абсциссами А, В, С и D. В правом столбце указаны значения производной в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.


ТОЧКИ
А
В
С
D

ЗНАЧЕНИЯ ПРОИЗВОДНОЙ
1) –4
2) 3
3) 2/3
4) -1/2

Вспомним, что означает производная, а именно ее значение в точке — значение функции производной в точке равно тангенсу угла наклона (коэффициенту) касательной.

В ответах у нас есть два положительных, и два отрицательных варианта. Как мы помним, если коэффициент прямой (графика y = kx+ b ) положительный — то прямая возрастает, если же он отрицательный — то прямая убывает.

Возрастающих прямых у нас две — в точке A и D. Теперь вспомним, что же означает значение коэффициента k?

Коэффициент k показывает, насколько быстро возрастает или убывает функция (на самом деле коэффициент k сам является производной функции y = kx+ b).

Поэтому k = 2/3 соответствует более пологой прямой — D, а k = 3 — A.

Аналогично и в случае с отрицательными значениями: точке B соответствует более крутая прямая с k = — 4, а точке С — -1/2.

Вариант 14МБ5

На рисунке точками показаны объемы месячных продаж обогревателей в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных обогревателей. Для наглядности точки соединены линией.


Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж обогревателей .


Алгоритм выполнения

Анализируем части графика, соответствующие разным временам года. Формулируем ситуации, отображенные на графике. Находим для них наиболее подходящие варианты ответов.

Решение:

Зимой кол-во продаж превысило 120 шт./мес., причем оно все время увеличивалось. Эта ситуация соответствует варианту ответа №3. Т.е. получаем: А–3 .

Весной продажи постепенно упали со 120 обогревателей за месяц до 50. Наиболее приближенным к этой формулировке является вариант №2. Имеем: Б–2 .

Летом кол-во продаж не менялась и была минимальной. 2-я часть этой формулировки не отражена в ответах, а для первой подходит только №4. Отсюда имеем: В–4 .

Осенью продажи росли, однако их кол-во ни в одном из месяцев не превысило 100 штук. Эта ситуация описана в варианте №1. Получаем: Г–1 .

Вариант 14МБ6

На графике изображена зависимость скорости движения рейсового автобуса от времени. На вертикальной оси отмечена скорость автобуса в км/ч, на горизонтальной – время в минутах, прошедшее с начала движения автобуса.


Пользуясь графиком, поставьте в соответствие каждому интервалу времени характеристику движения автобуса на этом интервале.


Алгоритм выполнения
  1. Определяем цену деления на горизонтальной и на вертикальной шкале.
  2. Анализируем по очереди предложенные утверждения 1–4 из правой колонки («Характеристики»). Сопоставляем их с временными интервалами из левой колонки таблицы, находим пары «буква–число» для ответа.
Решение:

Цена деления горизонтальной шкалы составляет 1 с, вертикальной – 20 км/ч.

  1. Когда автобус делает остановку, его скорость равна 0. Нулевую скорость в течение 2 минут подряд автобус имел только с 9-й по 11-ю минуту. Это время попадает в интервал 8–12 мин. Значит, имеем пару для ответа: Б–1 .
  2. Скорость 20 км/ч и больше автобус имел в течение нескольких временных промежутков. Причем вариант А здесь не подходит, т.к., к примеру, на 7-й минуте скорость составляла 60 км/ч, вариант Б – потому что он уже применен, вариант Г – потому что в начале и конце промежутка автобус имел нулевую скорость. В данном случае подходит вариант В (12–16 мин); на этом промежутке автобус начинает движение со скоростью 40 км/ч, далее ускоряется до 100 км/м и потом постепенно снижает скорость до 20 км/ч. Итак, имеем: В–2 .
  3. Здесь установлено ограничение для скорости. При этом варианты Б и В мы не рассматриваем. Оставшиеся же интервалы А и Г подходят оба. Поэтому правильно будет рассмотреть сначала 4-й вариант, а потом снова вернуться в 3-му.
  4. Из двух оставшихся интервалов для характеристики №4 подходит только 4–8 мин, поскольку на этом промежутке остановка была (на 6-й минуте). На промежутке 18–22 мин остановок не было. Получаем: А–4 . Отсюда следует, что для характеристики №3 нужно взять интервал Г, т.е. получается пара Г–3 .

Вариант 14МБ7

На рисунке точками показан прирост населения Китая в период с 2004 по 2013 год. По горизонтали указывается год, по вертикали – прирост населения в процентах (увеличение численности населения относительно прошлого года). Для наглядности точки соединены линией.


Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику прироста населения Китая в этот период .


Алгоритм выполнения
  1. Определяем цену деления вертикальной шкалы рисунка. Находится она как разница пары соседних значений шкалы, деленная на 2 (т.к. между двумя соседними значениями имеется 2 деления).
  2. Анализируем последовательно приведенные в условии характеристики 1–4 (левая табличная колонка). Сопоставляем каждую из них с конкретным периодом времени (правая табличная колонка).
Решение:

Цена деления вертикальной шкалы составляет 0,01%.

  1. Падение прироста непрерывно продолжалось с 2004 по 2010 год. В 2010–2011 годах прирост был стабильно минимальным, и начиная с 2012 года оно начал увеличиваться. Т.е. остановка прироста произошла в 2010 году. Этот год находится в периоде 2009–2011 гг. Соответственно, имеем: В–1 .
  2. Наибольшим падением прироста следует считать самую «круто» падающую линию графика на рисунке. Она приходится на период 2006–2007 гг. и составляет 0,04%, за год (0,59–0,56=0,04% в 2006 г. и 0,56–0,52=0,04% в 2007 г.). Отсюда получаем: А–2 .
  3. Указанный в характеристике №3 прирост начался с 2007 года, продолжился в 2008 г. и завершился в 2009 году. Это соответствует периоду времени Б, т.е. имеем: Б–3 .
  4. Прирост населения начал увеличиваться после 2011 г., т.е. в 2012–2013 гг. Поэтому получаем: Г–4 .

Вариант 14МБ8

На рисунке изображены график функции и касательные, проведенные к нему в точках с абсциссами А,В,С и D.

В правом столбце указаны значения производной функции в точках А, В, С и D. Пользуясь графиком, поставьте в соответствие каждой точке значение производной функции в ней.

Алгоритм выполнения
  1. Рассматриваем пару касательных, имеющих острый угол с положит.направлением оси абсцисс. Сравниваем их, находим соответствие среди пары соответствующих значений производных.
  2. Рассматриваем пару касательных, образующих с положит.направлением оси абсцисс тупой угол. Сравниваем их по модулю, определяем соответствие их значениям производных среди двух оставшихся в правой колонке.
Решение:

Острый угол с положит.направлением оси абсцисс образуют производные в т.В и т.С. Эти производные имеют положит.значения. Поэтому выбирать тут следует между значениями №№1 и 3. Применяя правило о том, что если угол меньше 45 0 , то производная меньше 1, а если больше, то больше 1, делаем вывод: в т.В производная по модулю больше 1, в т.С – меньше 1. Это означает, что можно составить пары для ответа: В–3 и С–1 .

Производные в т.А и т.D образуют с положит.направлением оси абсцисс тупой угол. И тут применяем то же правило, немного перефразировав его: чем больше касательная в точке «прижата» к линии оси абсцисс (к отрицат. ее направлению), тем больше она по модулю. Тогда получаем: производная в т.А по модулю меньше, чем производная в т.D. Отсюда имеем пары для ответа: А–2 и D–4 .

Вариант 14МБ9

На рисунке точками показана среднесуточная температура воздуха в Москве в январе 2011 года. По горизонтали указываются числа месяца, по вертикали – температура в градусах Цельсия. Для наглядности точки соединены линией.


Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику изменения температуры .


Алгоритм выполнения

Анализируем последовательно характеристики 1–4 (правая колонка), используя график на рисунке. Ставим каждой из них в соответствие конкретный временной период (левая колонка).

Решение:
  1. Рост температуры наблюдался только в конце периода 22–28 января. Здесь 27 и 28 числа она повышалась соответственно на 1 и на 2 градуса. В конце периода 1–7 января температура была стабильной (–10 градусов), в конце 8–14 и 15–21 января понижалась (с –1 до –2 и с –11 до –12 градусов соответственно). Поэтому получаем: Г–1 .
  2. Поскольку каждый временной период охватывает 7 дней, то анализировать нужно температуру, начиная с 4-го дня каждого периода. Неизменной в течение 3–4 дней температура была только с 4 по 7 января. Поэтому получаем ответ: А–2 .
  3. Месячный минимум температуры наблюдался 17 января. Это число входит в период 15–21 января. Отсюда имеем пару: В–3 .
  4. Температурный максимум пришелся 10 января и составил +1 градус. Эта дата попадает в период 8–14 января. Значит, имеем: Б–4.

Вариант 14МБ10

Алгоритм выполнения
  1. Значение функции в точке положительно, если эта точка расположена выше оси Ох.
  2. Производная в точке больше нуля, если касательная к этой точке образует острый угол с положительным направлением оси Ох.
Решение:

Точка А. Она находится ниже оси Ох, значит значение функции в ней отрицательно. Если провести в ней касательную, то угол между нею и положит.направлением Ох составит около 90 0 , т.е. образует острый угол. Значит, в данном случае подходит характеристика №3. Т.е. имеем: А–3 .

Точка Б. Она находится над осью Ох, т.е. точка имеет положит.значение функции. Касательная в этой точке будет довольно близко «прилегать» к оси абсцисс, образуя тупой угол (немногим меньше 180 0) с положительным ее направлением. Соответственно, производная в этой точке отрицательна. Т.о., здесь подходит характеристика 1. Получаем ответ: В–1 .

Точка С. Точка расположена ниже оси Ох, касательная в ней образует большой тупой угол с положит.направлением оси абсцисс. Т.е. в т.С значение и функции, и производной отрицательно, что соответствует характеристике №2. Ответ: С–2 .

Точка D. Точка находится выше оси Ох, а касательная в ней образует с положит.направлением оси острый угол. Это говорит о том, что как значение функции, так и значение производной здесь больше нуля. Ответ: D–4 .

Вариант 14МБ11

На рисунке точками показаны объемы месячных продаж холодильников в магазине бытовой техники. По горизонтали указываются месяцы, по вертикали – количество проданных холодильников. Для наглядности точки соединены линией.


Пользуясь рисунком, поставьте в соответствие каждому из указанных периодов времени характеристику продаж холодильников .

ВНЕАУДИТОРНАЯ ПРАКТИЧЕСКАЯ РАБОТА 2

Преобразование графиков функций.

Цель

Постройте графики функций, используя различные преобразования, ответьте на вопрос задачи.

Выполнение работы

Методические указания

Работа рассчитана на 10 вариантов, номер варианта совпадает с последней цифрой порядкового номере в списке. Например, 1, 11, 21, 31 …выполняют 1 вариант, 2,12, 22 … - 2 вариант, и т.д.

Работа состоит из двух частей: первая часть задания 1 – 5, это задания которые обязательно нужно выполнить, чтобы получить зачет, если эти задания выполнены с ошибкой, необходимо их исправить и снова сдать работу на проверку. Вторая часть, содержит задания, выполнив которые, вы можете заработать дополнительную оценку: основная часть +2 задания – «4», основная часть +3 задания – «5».

Задание 1. Графиком линейной функции является прямая, для ее построения достаточно двух точек. (значения аргумента х берем произвольно, а значение функции у, считаем подставляя в формулу).

Чтобы проверить проходит ли график функции через указанную точку нужно координаты точки подставить вместо х и у, если получили верное равенство, то прямая проходит через указанную точку, в противном случае – не проходит.

Задание 2, 3, 4. Графики указанных функций получаются из графиков функций , используя сдвиг вдоль оси х или у.

, сначала строим график функции или , затем сдвигаем его на «а» единиц вправо или влево (+а – влево, - а вправо), затем сдвигаем на «в» единиц вверх или вниз (+в – вверх, -в – вниз)

Аналогично с другими функциями:

Задание 5 Чтобы построить график функции: , нужно: 1) построить график функции , 2) часть графика которая находится выше оси х оставить без изменения, 3) часть графика, которая находится ниже оси х зеркально отобразить.

Задачи для самостоятельного решения.

Обязательная часть

Задание 1. Постройте график линейной функции, определите, проходит ли график функции через указанную точку:


Задание 2. Постройте график квадратичной функции, укажите множество значений данной функции.


Задание 3. Постройте график функции, определите, возрастает или убывает указанная функция.


Задание 4. Постройте график функции, ответьте на вопрос задачи.


Задание 5. Постройте график функции, содержащей знак модуля.


Задачи на дополнительную оценку.

Задание 6. Постройте график функции, заданной кусочно, определите, есть ли точка разрыва у данной функции:



Задание 7. Определите, сколько решений имеет система уравнений, отвеет обоснуйте. Сделайте выводы, ответив на вопросы.

    Графики каких функций вы строили в данной работе?

    Как называется график линейной функции?

    Как называется график квадратичной функции?

    Какие преобразования графиков вы знаете?

    Как в системе координат располагается график четной функции? График нечетной функции?

Цели урока:

Учебные: Повторить теоретические сведения по теме «Применение производной» обобщить, закрепить и улучшить знания по данной теме.

Научить применять полученные теоретические знания при решении различного типа математических задач.

Рассмотреть методы решения заданий ЕГЭ, связанные с понятием производной базового и повышенного уровня сложности.

Воспитательные:

Обучение навыкам: планирование деятельности,работы в оптимальном темпе,работы в группе, подведение итогов.

Развивать умение оценивать свои способности,умение контактировать с товарищами.

Воспитывать чувства ответственности и сопереживания.Способствовать воспитанию умения работать в команде; умения.. относится к мнению одноклассников.

Развивающие: Уметь оформлять ключевые понятия изучаемой темы. Развивать навыки работы в группе.

Тип урока: комбинированный:

Обобщение,закрепление навыков применение свойств элементарных функций,применение уже сформированных знаний, умений и навыков применение производной в нестандартных ситуациях.

Оборудования: компьютер,проектор,экран,раздаточный материал.

План урока:

1. Организационная деятельность

Рефлексия настроения

2. Актуализация знаний учащегося

3. Устная работа

4. Самостоятельная работа в группах

5. Защита выполненных работ

6. Самостоятельная работа

7. Домашние задание

8. Итог урока

9. Рефлексия настроения

Ход урока

1. Рефлексия настроения.

Ребята,доброе утро.Я пришла к вам на урок вот с таким настроением (показываю изображение солнца)!

А какое у вас настроение?

У вас на столе лежат карточки с изображениями солнца,солнце за тучей и тучи.Покажите какое у вас настроение.

2. Анализируя результаты пробных экзаменов,а так же результаты итоговой аттестации последних лет,можно сделать вывод о том,что с заданиями математического анализа,из работы ЕГЭ справляются не более 30%-35% выпускников.Вот и в нашем классе по результатам тренировочных и диагностических работ верно выполняют их не все. Этим и обусловлен наш выбор.Будем отрабатывать навык применения производной при решении задач ЕГЭ.

Помимо проблем итоговой аттестации возникают вопросы и сомнения,в какой мере приобретаемые в этой области знания могут и будут востребованы дальнейшем,насколько оправданы как затраты времени,так и здоровья на изучение этой темы.

Зачем нужна производная? Где мы встречаемся с производной и используем ее? Можно ли без нее обойтись в математике и не только?

Сообщение ученицы 3 минуты -

3. Устная работа.

4. Самостоятельная работа в группах (3 группы)

Задание 1 группы

) В чем заключается геометрический смысл производной?

2) а) На рисунке изображен график функции y=f(x) и касательная к этому графику, проведенная в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

б) На рисунке изображен график функции y=f(x) и касательная к этому графику, проведенная в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.

Ответ 1 группы:

1) Значение производной функции в точке x=x0 равно условному коэффициэнту касательной,проведенной к графику этой функции в точке с абсциссой х0.Нулевой коэффициент равен тангенсу угла наклона касательной (или, другими словами) тангенсу угла образованного касательной и.. направлением оси Оx)

2) А)f1(x)=4/2=2

3) Б)f1(x)=-4/2=-2

Задание 2 группы

1) В чем заключается физический смысл производной?

2) Материальная точка движется прямолинейно по закону
x(t)=-t2+8t-21, где х - расстояние от точки отсчета в метрах, t -время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=3 с.

3) Материальная точка движется прямолинейно по закону
x(t)= ½*t2-t-4, где х - расстояние от точки отсчета в метрах, t- время в секундах, измеренное с начала движения. В какой момент времени (в секундах) ее скорость была равна 6 м/с?

Ответ 2 группы:

1) Физический (механический) смысл производной состоит в следующем.

Если S(t) закон прямоленейного движения тела,то производная выражает мгновенную скорость в момент времени t:

V(t)=-x(t)=-2t=8=-2*3+8=2

3) X(t)=1/2t^2-t-4

Задание 3 группы

1) Прямая y= 3x-5 параллельна касательной к графику функции y=x2+2x-7. Найдите абсциссу точки касания.

2) На рисунке изображен график функции y=f(x), определенной на интервале (-9;8). Определите количество целых точек на этом интервале, в которых производная функции f(x) положительна.

Ответ 3 группы:

1) Т.к прямая y=3x-5 паралельна касательной то угловой коэффициент касательной равен угловому коэффициенту прямойy=3x-5,т.е, k=3.

Y1(x)=3 ,y1=(x^2+2x-7)1=2x=2 2x+2=3

2) Целые точки -это точки с целочисленными значениями абсцисс.

Производная функция f(x) положительна,если функция возрастает.

Вопрос:Что вы можете сказать о производной функции,которую описывает поговорка «Чем дальше в лес,тем больше дров»

Ответ: Производная положительна на всей области определения,т.к эта функция - монотонно возрастает

6. Самостоятельная работа (на 6 вариантов)

7. Домашнее задание.

Тренировочная работа Ответы:

Итог урока.

«Музыка может возвышать или умиротворять душу, живопись - радовать глаз, поэзия - пробуждать чувства, философия - удовлетворять потребности разума, инженерное дело - совершенствовать материальную сторону жизни людей. Но математика способна достичь всех этих целей.»

Так сказал американский математик Морис Клайн.

Спасибо за работу!