Явление радиоактивности. Естественная и искусственная радиоактивность. Радиоизотопы. Контрольные вопросы по разделу

С тех пор необычайные и удивительные свойства урана привлекли к себе внимание выдающихся физиков и химиков, и в первую очередь Пьера Кюри (1859–1906) и Марии Склодовской-Кюри (1867–1934). Действительно, уран оказался не единственным химическим элементом, способным испускать новые лучи. Соотечественники Беккереля Пьер и Мария Кюри из десятков тонн руды выделили миллиграммы неизвестных ранее элементов – полония и радия. Эти элементы также испускали урановые лучи. Аналогичные свойства исследователи обнаружили и у тория.

Лучи, открытые Анри Беккерелем, стали называть радиоактивными, а само явление их испускания – радиоактивное.

В результате большого числа опытов ученым удалось установить, что радиоактивность представляет собой естественный самопроизвольный распад не-устойчивых атомов. Например, при распаде порождает ряд других радиоактивных элементов и в конечном итоге превращается в стабильный изотоп свинца.

В 1934 году в лаборатории Радиевого института в Париже Фредерик Жолио-Кюри (1900–1958) и его жена Ирен Жолио-Кюри (1897–1956) открыли искусственную радиоактивность, радиоактивность продуктов ядерных реакций, которая впоследствии приобрела особенно важное значение. Из общего числа (-2000) известных радионуклидов лишь порядка 300 – природные, а остальные получены в результате ядерных peaкций. Между искусственной и естественной радиоактивностями нет принципиального различия. Излучение искусственной радиоактивности привело к открытию новых видов?-превращения: позитронному?-излучению и электронному k-захвату.

В 1940 году советские физики К. А. Петржак и Г. Н. Флеров открыли спонтанное деление ядер урана. Спонтанное деление ядер – это процесс туннельного прохождения ядер через барьер деления. Впоследствии это явление было наблюдено и для многих других «тяжелых» ядер.


ГЛАВА 2. ИСТОЧНИКИ РАДИАЦИИ ПРИРОДНОГО И ТЕХНОГЕННОГО ПРОИСХОЖДЕНИЯ

Естественный фон радиации образуют космические лучи, падающие на Землю из космоса, и радиоактивные элементы, содержащиеся в земных породах и пище, которую мы едим (рис. 1).



Естественные радиоактивные вещества обусловливают уровень как внешнего, так и внутреннего облучения организма. Радиоактивные элементы, содержащиеся в земном коре и строительных материалах, из которых сооружены наши дома, испускают лучи, непрестанно проходящие сквозь наши тела, т. е. они образуют внешний источник радиации. В то же время наши пища содержит микроскопическое количество редких радиоактивных элементов, которые поступают внутрь организма и образуют постоянный источник внутреннего облучения. Только недавно специалисты признали, что содержание радиоактивного радона, выделяемого строительными материалами во вдыхаемом воздухе, ведет к значительному облучению организма.

Рис. 1. Иллюстрация действия основных компонентов естественного радиационного фона: а) космических лучей; б) радиоактивности земной коры; в)радиоактивности, исходящей из строительных материалов; г) радиоактивности, содержащейся в пище.

Космическое излучение

Каждую секунду на площадку в один квадратный метр через границу темной атмосферы в направлении земной поверхности влетают из космоса более 10000 релятивистских (т. е. движущиеся со скоростями, близкими к скорости света) заряженных частиц. Они называются космическими лучами. Про-исхождение большей части космических лучей, десятки миллионов лет блуждающих в межзвездной среде, связано с грандиозными взрывами звезд (так называемых «сверхновых») в нашей Галактике. Частицы самых высоких энергий, возможно, приходят к нам из других, более активных Галактик.

Больше всего в составе космических лучей протонов, т. е. ядер водорода, – около 90% от числа всех частиц. Примерно в 10 раз меньше ядер гелия. На долю всех остальных ядер приходится около 1%. В космических лучах уже обнаружена большая часть элементов таблицы Менделеева.

Мощность космических лучей, достигающих Земной поверхности, колеблется в зависимости от:

а) географической широты,

б) высоты над уровнем моря.

Изменение мощности космических лучей в зависимости от географической широты обусловлено тем, что Земля похожа на гигантский магнит. По-этому космические лучи, будучи заряженными частицами, отклоняются в районе над экватором и собираются вместе в виде своеобразных воронок в области полюсов Земли. Области вблизи экватора, находящиеся на уровне моря, получают наименьшую дозу космического излучения, исчисляемую приблизительно как 0,35 мЗв/год, В географических областях, расположенных на уровне моря, но на значительном удалении от экватора, например, на широте около 50", доза космического излучения составляет приме 0,5 мЗв/год.

Эту дозу испытывают жители расположенных вблизи данной широты городов, таких, как Лондон, Москва, Нью-Йорк, обусловлено тем, что толстый слой атмосферы, содержащий воздух и пары воды, окутывает Землю как одеяло, разрушая, замедляя и останавливая движение многих быстрых заряженных частиц, мчащихся из космоса.

Наиболее поднятые над уровнем моря и обитаемые области Земли расположены на высоте, близкой к 4500 м. Здесь доза облучения из космоса составляет 3 мЗв/год. На вершине пика Эвереста (8848 м над уровнем моря), высочайшей точки земной поверхности, соответствующий показатель будет составлять приблизительно 8 мЗв/год. Средняя мощность дозы космического облучения жителей Земли приблизительно принимав 0,3 мЗв/год.

Еще более интенсивному облучению подвергаются экипажи и пассажиры самолетов. При подъеме с 4 км до 12 км (максимальная высота полета трансконтинентальных авиалайнеров) доза космического облучения возрастает примерно в 25 раз. С дальнейшим увеличением высоты над уровнем моря доза космического излучения продолжает увеличиваться, на высоте 20 (максимальная высота полета сверхзвуковых реактивных самолетов) достигает 13 мкЗв/ч.

Космическое излучение имеет три источника происхождения:

Первый источник – галактическая радиация идет к нам из отдаленных районов космоса, расположенных вне нашей Солнечной системы.

Второй источник – эту радиацию создают заряженные частицы, циркулирующие вокруг Земли.

Третий источник – непредвиденные мощные потоки радиации, идущие от Солнца.

Галактическая радиация

Галактическое излучение состоит главным образом на протонов и?-частиц, т. е. атомов водорода и гелия, лишенных орбитальных электронов и движущихся с неслыханной скоростью, близкой к скорости света. Обладающие высокой энергией тяжелые ядра представляют уникальное излучение, характерное для космоса. Во время длительного полета на Луну в корабле «Аполлон-11» один из астронавтов отмечал яркие вспышки света, которые он «видел» в момент отдыха в полностью затемненной кабине. Данное явление – следствие прохождении частиц с высокой энергией сквозь глаз и непосредственного воздействия на сетчатку. Особая категория частиц, содержащихся в космосе, имеет очень высокую энергию, крупный размер и большую массу, т. е. имеет большое атомное число, и данные частицы известны как НZЕ-частицы. Каждая частица разрушает на своем пути множество функциональных клеток головного мозга.

Мощность дозы галактической радиации не очень меняется во времени и не слишком высока, чтобы быть смертельной для космонавтов и астронавтов.

Естественная называют радиоактивность изотопов, существующих в природе, или радиоактивность изотопов, образующихся в результате природных процессов (все изотопы полученные естественно).

Искусственной называют радиоактивность изотопов, которые возникают в результате деятельности человека (изотопы, полученные и получаемые на ускорителях частиц).

Использование радионуклидов в медицине.

В диагностических и терапевтических целях в медицине широко используют радионуклиды.В природе их нет. Получают искусственно.

Радионуклидами называют изотопы с малым периодом полураспада.

Диагностическое применение основано на избирательном накоплении химических элементов отдельными органами (йод, кальций, железо и др.). Введение в организм радиоизотопов позволяет определить области их концентрации и получить важную диагностическую информацию. Такой метод называется метод меченых атомов.

Терапевтическое использование радионуклидов основано на разрушающем действии ионизирующего излучения на клетки опухолей.

1. Гамма –терапия – для разрушения …
глубоко расположенных опухолей облучают гамма — лучами источника излучения радиоизотопа 60 Со.

В целях защиты здоровых клеток в разных направлениях облучают по разному.

2. Альфа – терапия – лечебное использование альфа – частиц возможно при непосредственном контакте с поверхностью органа, т.к., альфа – частицы обладают значительной линейной плотностью ионизации и поглощается небольшим слом воздуха.

Контрольные вопросы по разделу

1. Каково строение ядер атомов? Каковы свойства ядерных сил? От чего зависит устойчивость ядер?

2. В чем состоит радиоактивный распад ядер? Каковы виды радиоактивного распада? Назовите правила смещения. Какие законы сохранения выполняются при радиоактивном распаде?

3. Каковы энергетические спектры альфа-частиц и гамма-излучений, сопровождающих распад? Какую информацию они дают?

4. Расскажите о естественной и искусственной радиоактивности и методах получения радионуклидов. Ч такое нейтронная активация?

5. Приведите примеры распада основных радионуклидов, определяющих характер радиоактивного заражения после аварии на ЧАЭС.

6. В чем состоит основной закон радиоактивного распада? Каков смысл входящих в него величин? Приведите его график. Какова связь между постоянной радиоактивного распада, периодом полураспада и средней продолжительностью жизни нуклидов?

7. Что такое активность? В каких единицах она измеряется? Какова связь между системными и внесистемными единицами активности? Что такое удельная объемная, массовая и поверхностная активность? Назовите единицы их измерения.

8. Какая связь между активностью и массой радионуклидов?

9. Каковы основные параметры, характеризующие взаимодействие ионизирующего излучения с веществом? Охарактеризуй те из (линейная плотность ионизации, линейная передача энергии, средний линейный пробег).

10. Каковы особенности взаимодействия с веществом, альфа- и бета-частиц, нейтронов и гамма-излучений? Укажите принципы защиты от ионизирующих излучений.

11. Каковы физические основы радионуклидных методов диагностики? Охарактеризуйте гамма-хронографию и гамма-топографию.

12. На каких физических явлениях основана работа позитронно-эмиссионного томографа (ПЭТ)? Каковы его возможности?

13. Каковы физические принципы и возможности лучевой терапии?

Дозиметрия

Необходимость количественной оценки действия ионизирующего излучения на различные вещества живой и неживой природы привела к появлению дозиметрии.

Дозиметрия раздел ядерной физики и измерительной техники, в котором изучают величины, характеризующие действие ионизирующего излучения на вещества, а также методы и приборы для их измерения.

Процессы взаимодействия излучения с тканями зависят от вида ткани. Для различных типов излучений она протекает не одинаково. Но во всех случаях происходит преобразование энергии излучения в другие виды энергии. В результате часть энергии излучения поглощается веществом.

Поглощенная энергия — первопричина всех последующих процессов, которые в конечном итоге приводят к биологическим изменениям в живом организме. Количественно действие ионизирующего излучения (независимо от его природы) оценивается по энергии, переданной веществу. Для этого используется специальная величина — доза излучения (доза — порция).

Поглощенная доза(D) — величина, равная отношению энергии ΔΕ, переданной элементу облучаемого вещества, к массе Δm этого элемента:

D = ∆E/ m∆

В СИ единицей поглощенной дозы является грей (Гр), в честь английского физика-радиобиолога Луи Гарольда Грея. 1 Гр= Дж/кг -это поглощенная доза ионизирующего излучения любого вида, при которой в 1 кг массы вещества поглощается энергия 1 Дж энергии излучения.

В практической дозиметрии обычно пользуются внесистемной единицей поглощенной дозы — рад (1 рад = 10 -2 Гр).

Величина поглощенной дозыучитывает только энергию, переданную облучаемому объекту, но не учитывает «качество излучения». Понятие качества излученияхарактеризует способность данного вида излучения производить различные радиационные эффекты. Для оценки качества излучения вводят параметр — коэффициент качества (quality factor). Он является регламентированной величиной, его значения определены специальными комиссиями и включены в международные нормы, предназначенные для контроля над радиационной опасностью.

Радиоактивность - это свойство атомных ядер определенных химических элементов самопроизвольно превращаться в ядра других элементов с испусканием особого рода излучения, называемого радиоактивным. Нельзя повлиять на течение процесса радиоактивного распада, не изменив состояния атомного ядра. На скорость течения радиоактивных превращений не оказывают никакого воздействия изменения температуры и давления, наличие электрического и магнитного полей, вид химического соединения данного радиоактивного элемента и его агрегатное состояние.

Радиоактивные явления, происходящие в природе, называют естественной радиоактивностью (космическая радиация и излучения природных радионуклидов, рассеянных в земных породах, почве, воде, воздухе, строительных и других материалах, живых организмах). Например, изотоп 40 K широко рассеян в почвах и прочно удерживается глинами вследствие процессов сорбции. Глинистые почвы почти везде богаче радиоактивными элементами, чем песчаные и известняки. Радиоактивные тяжелые элементы (U, Th, Ra) содержатся преимущественно в горных гранитных породах. Радиоактивные элементы распространены в природе в ничтожных количествах. В земной коре естественно-радиоактивные элементы есть преимущественно в урановых рудах, и почти все они являются изотопами тяжелых элементов с атомным номером более 83. Цепи радиоактивных распадов начинаются с урана - радия (- Ra), тория () или актиния ().

Аналогичные процессы, происходящие в искусственно полученных веществах (через соответствующие ядерные реакции), называют искусственной радиоактивностью (сжигание угля, разработка месторождений радиоактивных руд, применение радионуклидов в различных отраслях экономики, работа ядерно-технических установок, ядерные взрывы в мирных целях (строительство подземных хранилищ, нефтедобыча, строительство каналов), аварии на объектах, содержащих радиоактивные вещества, ядерные отходы АЭС, промышленности, флота, испытание ядерного оружия (при ядерных взрывах образуется около 250 изотопов 35 элементов (из них 225 радиоактивных) как непосредственных осколков деления ядер тяжелых элементов (235 U, 239 Pu, 233 U, 238 U), так и продуктов их распада.

Количество радиоактивных продуктов деления (РПД) возрастает соответственно мощности ядерного заряда. Часть образовавшихся РПД распадается в ближайшие секунды и минуты после взрыва, другая часть имеет период полураспада порядка нескольких часов.

Радионуклиды, такие как 86 Rb, 89 Sr, 91 Y, 95 Cd, 125 Sn. l25 Te, l31 I, 133 Xe, l36 Cs, 140 Ba, 141 Ce, 156 Eu, 161 Yb, обладают периодом полураспада в несколько дней, a 85 Kr, 90 Sr, 106 Ru, 125 Sb, 137 Cs, l47 Pm, l5l Sm, l55 Eu - от одного года до нескольких десятков лет. Группа, состоящая из 87 Rb, 93 Zr, l29 I, 135 Cs, 144 Nd, 137 Sm, характеризуется чрезвычайно медленным распадом, продолжающимся миллионы лет)).

Искусственные радионуклиды по различным причинам попадают в окружающую среду, повышая тем самым радиационный фон. Кроме того, они включаются в биологические системы и поступают непосредственно в организм животных и человека. Все это создает опасность для нормальной жизнедеятельности живого организма.

Внешние и внутренние источники, действуя непрерывно, сообщают организму определенную поглощенную дозу. Большую часть облучения от источников естественной радиации человек получает за счет земных источников -- в среднем более 5/6 годовой эффективной эквивалентной дозы, получаемой населением (в основном внутреннее облучение). Оставшаяся часть приходится на космическое излучение (главным образом внешнее облучение). Эффективная эквивалентная доза от воздействия космического излучения составляет около 300 мкЗв/год (для живущих на уровне моря), для живущих выше 2 тыс. м над уровнем моря эта величина в несколько раз больше. Среднегодовая безопасная доза для человека составляет около 1,2 мГр на гонады и 1,3 мГр на скелет.

Искусственную радиоактивность открыли супруги Ирен (1897–1956) и Фредерик (1900–1958) Жолио-Кюри. 15 января 1934 года их заметка была представлена Ж. Перреном на заседании Парижской Академии наук. Ирен и Фредерик сумели установить, что после бомбардировки альфа-частицами некоторые легкие элементы - магний, бор, алюминий - испускают позитроны. Далее они попытались установить механизм этого испускания, которое отличалось по своему характеру от всех известных в то время случаев ядерных превращений. Ученые поместили источник альфа-частиц (препарат полония) на расстоянии одного миллиметра от алюминиевой фольги. Затем они подвергали ее облучению в течение примерно десяти минут. Счетчик Гейгера - Мюллера показал, что фольга испускает излучение, интенсивность которого падает во времени по экспоненциальной зависимости с периодом полураспада 3 минут 15 секунд. В экспериментах с бором и магнием периоды полураспада составили 14 и 2,5 минут соответственно. А вот при опытах с водородом, литием, углеродом, бериллием, азотом, кислородом, фтором, натрием, кальцием, никелем и серебром таких явлений не обнаруживалось. Тем не менее супруги Жолио-Кюри сделали вывод о том, что излучение, вызванное бомбардировкой атомов алюминия, магния и бора, нельзя объяснить наличием какой-либо примеси в полониевом препарате. «Анализ излучения бора и алюминия в камере Вильсона показал, - пишут в своей книге „Биография атома“ К. Манолов и В. Тютюнник, - что оно представляет собой поток позитронов. Стало ясно, что ученые имеют дело с новым явлением, существенно отличавшимся от всех известных случаев ядерных превращений. Известные до того времени ядерные реакции носили взрывной характер, тогда как испускание положительных электронов некоторыми легкими элементами, подвергнутыми облучению альфа-лучами полония, продолжается в течение некоторого более или менее продолжительного времени после удаления источника альфа-лучей. В случае бора, например, это время достигает получаса». Супруги Жолио-Кюри пришли к выводу, что здесь речь идет о самой настоящей радиоактивности, проявляющейся в испускании позитрона. Нужны были новые доказательства, и, прежде всего, требовалось выделить соответствующий радиоактивный изотоп. Опираясь на исследования Резерфорда и Кокрофта, Ирен и Фредерику Жолио-Кюри удалось установить, что происходит с атомами алюминия при бомбардировке их альфа-частицами полония. Сначала альфа-частицы захватываются ядром атома алюминия, положительный заряд которого возрастает на две единицы, вследствие чего оно превращается в ядро радиоактивного атома фосфора, названного учеными «радиофосфором». Этот процесс сопровождается испусканием одного нейтрона, вот почему масса полученного изотопа возрастает не на четыре, а на три единицы и становится равной 30. Устойчивый изотоп фосфора имеет массу 31. «Радиофосфор» с зарядом 15 и массой 30 распадается с периодом полураспада 3 минут 15 секунд, излучая один позитрон и превращаясь в устойчивый изотоп кремния. Единственным и неоспоримым доказательством того, что алюминий превращается в фосфор и потом в кремний с зарядом 14 и массой 30, могло быть только выделение этих элементов и их идентификация с помощью характерных для них качественных химических реакций. Для любого химика, работающего с устойчивыми соединениями, это было простой задачей, но у Ирен и Фредерика положение было совершенно иным: полученные ими атомы фосфора существовали чуть больше трех минут. Химики располагают множеством методов обнаружения этого элемента, но все они требуют длительных определений. Поэтому мнение химиков было единодушным: идентифицировать фосфор за такое короткое время невозможно. Однако супруги Жолио-Кюри не признавали слова «невозможно». И хотя эта «неразрешимая» задача требовала непосильного труда, напряжения, виртуозной ловкости и бесконечного терпения, она была решена. Несмотря на чрезвычайно малый выход продуктов ядерных превращений и совершенно ничтожную массу вещества, претерпевшего превращение, - лишь несколько миллионов атомов, удалось установить химические свойства полученного радиоактивного фосфора. Обнаружение искусственной радиоактивности сразу было оценено как одно из крупнейших открытий века. До этого радиоактивность, которая была присуща некоторым элементам, не могла быть ни вызвана, ни уничтожена, ни как-нибудь изменена человеком. Супруги Жолио-Кюри впервые искусственно вызвали радиоактивность, получив новые радиоактивные изотопы. Ученые предвидели большое теоретическое значение этого открытия и возможности его практических приложений в области биологии и медицины. Уже в следующем году первооткрыватели искусственной радиоактивности Ирен и Фредерик Жолио-Кюри были удостоены Нобелевской премии по химии. Продолжая эти исследования, итальянский ученый Ферми показал, что бомбардировка нейтронами вызывает искусственную радиоактивность в тяжелых металлах. Энрико Ферми (1901–1954) родился в Риме. Еще в детстве Энрико обнаружил большие способности к математике и физике. Его выдающиеся познания в этих науках, приобретенные в основном в результате самообразования, позволили ему получить в 1918 году стипендию и поступить в Высшую нормальную школу при Пизанском университете. Затем Энрико получил временную должность преподавателя математики для химиков в Римском университете. В 1923 году он едет в командировку в Германию, в Геттинген, к Максу Борну. По возвращении в Италию Ферми с января 1925 года до осени 1926 года работает во Флорентийском университете. Здесь он получает свою первую ученую степень «свободного доцента» и, что самое главное, создает свою знаменитую работу по квантовой статистике. В декабре 1926 года он занял должность профессора вновь учрежденной кафедры теоретической физики в Римском университете. Здесь он организовал коллектив молодых физиков: Разетти, Амальди, Сегре, Понтекорво и других, составивших итальянскую школу современной физики. Когда в Римском университете в 1927 году была учреждена первая кафедра теоретической физики, Ферми, успевший обрести международный авторитет, был избран ее главой. Здесь в столице Италии Ферми сплотил вокруг себя несколько выдающихся ученых и основал первую в стране школу современной физики. В международных научных кругах ее стали называть группой Ферми. Через два года Ферми был назначен Бенито Муссолини на почетную должность члена вновь созданной Королевской академии Италии. В 1938 году Ферми была присуждена Нобелевская премия по физике. В решении Нобелевского комитета говорилось, что премия присуждена Ферми «за доказательства существования новых радиоактивных элементов, полученных при облучении нейтронами, и связанное с этим открытие ядерных реакций, вызываемых медленными нейтронами». Об искусственной радиоактивности Энрико Ферми узнал сразу же, весной 1934 года, как только супруги Жолио-Кюри опубликовали свои результаты. Ферми решил повторить опыты Жолио-Кюри, но пошел совершенно иным путем, применив в качестве бомбардирующих частиц нейтроны. Позже Ферми так объяснил причины недоверия к нейтронам со стороны других физиков и свою собственную счастливую догадку: «Применение нейтронов как бомбардирующих частиц страдает недостатком: число нейтронов, которым можно практически располагать, неизмеримо меньше числа альфа-частиц, получаемых от радиоактивных источников, или числа протонов и дейтронов, ускоряемых в высоковольтных устройствах. Но этот недостаток частично компенсируется большей эффективностью нейтронов при проведении искусственных ядерных превращений Нейтроны обладают также и другим преимуществом. Они в большой степени способны вызывать ядерные превращения. Число элементов, которые могут быть активированы нейтронами, значительно превосходит число элементов, которые можно активировать с помощью других видов частиц». Весной 1934 года Ферми начал облучать элементы нейтронами. «Нейтронные пушки» Ферми представляли собой маленькие трубочки длиной несколько сантиметров. Их заполняли «смесью» тонкодисперсного порошка бериллия и эманации радия. Вот как Ферми описывал один из таких источников нейтронов: «Это была стеклянная трубочка размером всего 1,5 см… в которой находились зерна бериллия; прежде чем запаять трубочку, надо было ввести в нее некоторое количество эманации радия. Альфа-частицы, испускаемые радоном, в большом числе сталкиваются с атомами бериллия и дают нейтроны… Опыт выполняется следующим образом. В непосредственной близости от источника нейтронов помещают пластинку алюминия, или железа, или вообще того элемента, который желательно изучить, и оставляют на несколько минут, часов или дней (в зависимости от конкретного случая). Нейтроны, вылетающие из источника, сталкиваются с ядрами вещества. При этом происходит множество ядерных реакций самого различного типа…» Как все это выглядело на практике? Исследуемый образец находился заданное время под интенсивным воздействием нейтронного облучения, затем кто-либо из сотрудников Ферми буквально бегом переносил образец к счетчику Гейгера-Мюллера, расположенному в другой лаборатории, и регистрировал импульсы счетчика. Ведь многие новые искусственные радиоизотопы были короткоживущими. В первом сообщении, датированном 25 марта 1934 года, Ферми сообщил, что бомбардируя алюминий и фтор, получил изотопы натрия и азота, испускающие электроны (а не позитроны, как у Жолио-Кюри). Метод нейтронной бомбардировки оказался очень эффективным, и Ферми писал, что эта высокая эффективность в осуществлении расщепления «вполне компенсирует слабость существующих нейтронных источников по сравнению с источниками альфа-частиц и протонов». В сущности, многое было известно. Нейтроны попадали в ядро обстреливаемого атома, превращали его в нестабильный изотоп, который спонтанно распадался и излучал. В этом излучении и таилось неизвестное: некоторые из искусственно полученных изотопов излучали бета-лучи, другие - гамма-лучи, третьи - альфа-частицы. С каждым днем число искусственно полученных радиоактивных изотопов возрастало. Каждую новую ядерную реакцию необходимо было осмыслить, чтобы разобраться в сложных превращениях атомов Для каждой реакции надо было установить характер излучения, потому что, только зная его, можно представить схему радиоактивного распада и предсказать элемент, который получится в конечном результате. Затем приходила очередь химиков. Они должны были идентифицировать полученные атомы. На это тоже требовалось время. С помощью своей «нейтронной пушки» Ферми подверг бомбардировке фтор, алюминий, кремний, фосфор, хлор, железо, кобальт, серебро и йод. Все эти элементы активировались, и во многих случаях Ферми мог указать химическую природу образовавшегося радиоактивного элемента. Ему удалось этим методом активизировать 47 из 68 изученных элементов. Воодушевленный успехом, он в сотрудничестве с Ф. Разетти и О. ДАгостино предпринял нейтронную бомбардировку тяжелых элементов: тория и урана. «Опыты показали, что оба элемента, предварительно очищенные от обычных активных примесей, могут сильно активизироваться при бомбардировке нейтронами». 22 октября 1934 года Ферми сделал фундаментальное открытие. Поместив между источником нейтронов и активируемым серебряным цилиндром парафиновый клин, Ферми заметил, что клин не уменьшает активность нейтронов, а несколько увеличивает ее. Ферми сделал вывод, что этот эффект, по-видимому, обусловлен наличием водорода в парафине, и решил проверить, как будет влиять на активность расщепления большое количество водородсодержащих элементов. Проведя опыт сначала с парафином, потом с водой, Ферми констатировал увеличение активности в сотни раз. Опыты Ферми обнаружили огромную эффективность медленных нейтронов. Но, помимо замечательных экспериментальных результатов, в этом же году Ферми достиг замечательных теоретических достижений. Уже в декабрьском номере 1933 года в итальянском научном журнале были опубликованы его предварительные соображения о бета-распаде. В начале 1934 года была опубликована его классическая статья «К теории бета-лучей». Авторское резюме статьи гласит: «Предлагается количественная теория бета-распада, основанная на существовании нейтрино: при этом испускание электронов и нейтрино рассматривается по аналогии с эмиссией светового кванта возбужденным атомом в теории излучения. Выведены формулы из времени жизни ядра и для формы непрерывного спектра бета-лучей; полученные формулы сравниваются с экспериментом». Ферми в этой теории дал жизнь гипотезе нейтрино и протонно-нейтронной модели ядра, приняв также гипотезу изотонического спина, предложенную Гейзенбергом для этой модели. Опираясь на высказанные Ферми идеи, Хидеки Юкава предсказал в 1935 году существование новой элементарной частицы, известной ныне под названием пи-мезона, или пиона. Комментируя теорию Ферми, Ф Разетти писал: «Построенная им на этой основе теория оказалась способной выдержать почти без изменения два с половиной десятилетия революционного развития ядерной физики. Можно было бы заметить, что физическая теория редко рождается в столь окончательной форме».

Первые сведения об атомной энергии были получены в конце прошлого столетия, когда ученые обнаружили, что некоторые химические элементы (уран, радий и др.) испускают в окружающее пространство не видимые гла­зом излучения. Это явление, т. е. испускание частиц и электромагнитного излучения атомами некоторых элемен­тов, происходящее вследствие ядерных превращений, стали называть радиоактивностью (от латинского слова «радиус» - луч). Ядерные превращения, т. е. самопроиз­вольные превращения ядер атомов одних элементов в ядра атомов других элементов, называются радиоак­тивным распадом .

Рис 8. Схема опыта по разделению радиоактивных лучей

Различают естественную и искусственную радиоактив­ность . Естественной называют радиоактивность естествен­ных изотопов, т. е. химических элементов, которые встре­чаются в природе. Искусственной называют радиоактив­ность изотопов, получаемых искусственным путем. Есте­ственная радиоактивность наблюдается у таких изотопов химических элементов, как, например, радий, ypart , торий и другие.

Достижения современной физики позволили получить очень большое количество искусственных радиоактивных изотопов. В настоящее время получены радиоактивные изотопы всех известных на сегодня химических элемен­тов, начиная от водорода, самого легкого химического элемента, занимающего первое место в таблице Менде­леева, и кончая центурием - самым тяжелым элементом, занимающим последнее, сотое место в этой таблице. При­чем для многих химических элементов получены не­сколько изотопов. Например, известны такие изотопы водорода: легкий водород - 1 протий 1 ,тяжелый водород - 1 дейтерий 2 и сверхтяжелый водород - 1 тритий 3 . Далее известны также несколько изотопов урана, например: 92 уран 233 , 92 уран 234 , 92 уран 235 , 92 уран 238 , 92 уран 239 . В пос­ледние годы было получено более 700 искусственных ра­диоактивных изотопов всех химических элементов, встре­чающихся в природе.

Какие же частицы испускают радиоактивные химиче­ские элементы при своем распаде? Как их можно обна­ружить?

Для этой цели крупинку радиоактивного препарата вкладывали в свинцовую коробку (рис. 8). Такую уста­новку помещали в сильное магнитное поле. Испускаемые этой крупинкой излучения, выходя через узкое отверстие, в магнитном поле раскладываются на три отдельных луча: вправо, влево и прямо, не отклоняясь. Этот опыт указывает, что некоторые вылетающие частицы имеют электрический заряд. Эти составляющие были названы соответственно альфа (α )-, бета (β )- и гамма (γ ) - лучами. Дальнейшим исследованием было установлено, что альфа-частицы несут положительный заряд и являются ядрами атома гелия (2 гелий 4). Они вылетают из ядра радиоактивного элемента со скоростью, достигающей примерно 20 000 километров в секунду.

Отрицательно заряженные бета-частицы (β ) представ­ляют собой электроны, которые движутся с различными скоростями, достигающими примерно 250 000 километров в секунду.

Альфа- и бета-распад зачастую сопровождается неви­димым электромагнитным излучением, получившим на­звание гамма-излучения . Гамма-излучение, испускаемое ядрами отдельными порциями, или, как говорят, кван­тами, представляет собой поток материальных электри­чески нейтральных частиц, называемых фотонами, и рас­пространяется со скоростью света, т. е. 300 000 километров в секунду.

Естественно, что не все радиоактивные изотопы явля­ются альфа- и бета-активными. Некоторые химические элементы испускают только альфа-частицы, другие эле­менты испускают только бета-частицы; существуют и та­кие элементы, которые испускают альфа- и бета-частицы одновременно.

Выше уже отмечалось, что в результате радиоактив­ного распада ядер образуются ядра новых химических элементов. Какие же это элементы?

Испускание альфа-частиц характерно для атомов тя­желых химических элементов. Очевидно, что заряд ядра, испускающего альфа-частицу, должен как-то измениться, ибо альфа-частица, являясь ядром атома гелия, уносит часть положительного заряда распадающегося ядра. В действительности так и происходит.

В результате альфа-распада получается ядро нового химического элемента, заряд ядра которого будет меньше заряда распавшегося ядра на две единицы, ибо альфа - частица, т. е. ядро атома гелия, несет положительный за­ряд в 2 элементарные единицы заряда. А так как место любого химического элемента в таблице Менделеева определяется зарядом ядра, то новый химический эле­мент, полученный в результате альфа-распада, будет на­ходиться на 2 клеточки левее исходного. Массовое число ядра нового элемента также уменьшится на 4 единицы (т. е. на величину- массового числа альфа-частицы). На­пример, радий, испуская альфа-частицу, превращается в радиоактивный газ - радон. Эта ядерная реакция альфа- распада может быть записана следующим образом:

88 радий 226 -> 86 радон 222 + 2 гелий 4 .

Другим видом радиоактивности является испускание бета-частиц, характерное для значительного числа есте­ственных и искусственных радиоактивных изотопов. Испускание ядром бета-частицы происходит вследствие того, что один из нейтронов ядра превращается в протон. Следовательно, в этом случае заряд нового ядра увели­чится на единицу. Так как вес электрона ничтожно мал, то потерей веса ядра вследствие испускания бета-частицы можно пренебречь. Поэтому в случае бета-распада принимается, что массовое число ядра остается прежним.

Пример такого бета-распада может быть записан так:

89 актиний 227 -> 90 торий 227 + -1 β 0

т. е. актиний, испуская бета-частицу, превращается в изотоп тория.

Возникает вопрос: какая же дальнейшая судьба альфа- и бета-частиц, испускаемых ядрами радиоактивных изо­топов?

Эти частицы, вылетая с большой скоростью, сталки­ваются с атомами окружающей среды. Сталкиваясь, они выбивают электроны из электронной оболочки атомов окружающей среды (воздуха, металлов и т. д.), в резуль­тате чего эти атомы превращаются в ионы.

Ионизирующую способность частиц оценивают удель­ной ионизацией, т. е. числом пар ионов, образующихся на одном сантиметре пути пробега частицы. В результате столкновения альфа-частицы с атомами окружающей среды она постепенно теряет скорость, а ее энергия посте­пенно уменьшается. Потеряв энергию, альфа-частица, т. е. ядро атома гелия, в конце концов присоединяет к себе свободные электроны, находящиеся всегда в любой среде, и таким образом превращается в атом гелия.

Бета-частица, т. е. быстро движущийся электрон, дви­гаясь, на своем пути также вызывает ионизацию атомов.

Замедленная бета-частица будет находиться в про­странстве до тех пор, пока не будет присоединена ядром или атомом какого-либо элемента.

Распространение в любой среде гамма-излучения также сопровождается ионизацией атомов. В этом случае степень ионизации характеризуется числом пар ионов, об­разовавшихся под воздействием гамма-излучения в одном кубическом сантиметре среды. Эта степень ионизации и является мерой интенсивности гамма-излучения. Степень ионизации является также мерой поглощенной энергии гамма-лучей.

Альфа- и бета-частицы, а также гамма-кванты, рас­пространяясь в любой среде (воздух, металл), взаимо­действуют с атомами этой среды. В результате такого взаимодействия они теряют свою энергию и ослабляются. Путь, пройденный альфа- и бета-частицами, а также гамма-квантами в веществе, получил название длины про­бега . Максимальной длиной пробега обладают гамма- лучи.

Длина пробега будет тем меньше, чем больше плот­ность материала, через который проникает излучение. Это видно из таких данных.

Длина пробега альфа-частицы, обладающей энергией в 8 мегаэлектрон-вольт, в такой среде, как воздух, со­ставляет 7,3 сантиметра, в воде - всего 0,06 миллиметра, в железе - 0,02 миллиметра.

Бета-частицы обладают большей длиной пробега. На­пример, бета-частица с энергией в 3 мегаэлектрон-вольта в воздухе имеет длину пробега 14,5 метра, в воде - 12,5 миллиметра, в алюминии - 4,9 миллиметра.

Гамма-излучение в воздухе распространяется на сотни метров без существенного ослабления. Даже очень плот­ные вещества слабо задерживают гамма-излучение. На­пример, слой железа толщиной 7 сантиметров ослабляет гамма-излучение, обладающее энергией в 1 мегаэлектрон­вольт, в 10 раз. Для ослабления гамма-излучения, обла­дающего той же энергией в 1 мегаэлектрон-вольт, в 10 раз требуется слой бетона около 25 сантиметров, а грунта - 30-35 сантиметров.

Из приведенных данных можно сделать вывод, что для защиты от альфа- и бета-излучения могут быть использованы простейшие средства, в то время как для защиты от гамма-лучей требуются специальные инже­нерные сооружения.

Итак, мы рассмотрели радиоактивные излучения хи­мических элементов. Однако процесс радиоактивного рас­пада у разных химических элементов протекает с различ­ными скоростями.

Для характеристики распада ядер во времени принят так называемый период полураспада . Периодом полу­распада называется промежуток времени, в течение кото­рого распадается половина атомов этого вещества. Пе­риоды полураспада для различных химических элемен­тов колеблются в очень широких пределах - от мил­лиардных долей секунды до многих миллиардов лет. Так, период полураспада радия составляет 1590 лет, урана-238 - 4 500 000 000 лет. Это значит, что если взять один грамм, например, радия, то через 1590 лет от него останется полграмма, а через следующие 1590 лет - четверть грамма и т. д.

При распаде ядер большинства естественных и неко­торых искусственных радиоактивных элементов образу­ются также радиоактивные ядра, в свою очередь, претер­певающие радиоактивный распад. Таким образом, в ре­зультате ряда превращений, сопровождающихся испусканием альфа- или бета-частиц, образуется целая цепочка радиоактивных элементов. Этот процесс продолжается до тех пор, пока не образуется конечный нерадиоактивный элемент. Совокупность всех продуктов последовательных радиоактивных распадов образует радиоактивное семей­ство , т. е. ряд данного элемента. В настоящее время таких радиоактивных семейств известно четыре; родоначальни­ками этих семейств являются: 92 уран 238 , 90 торий 232 , 92 уран 235 и 94 плутоний 241 .