Что такое вольфрам. Плотность вольфрама. Свойства и применение вольфрама. Примеры решения задач

Вольфрам выделяется среди металлов не только тугоплавкостью, но и массой. Плотность вольфрама при нормальных условиях составляет 19,25 г/см³, это примерно в 6 раз больше, чем у алюминия. По сравнению с медью вольфрам тяжелее ее в 2 раза. На первый взгляд, большая плотность может показаться недостатком, потому что сделанные из него изделия будут тяжелыми. Но даже эта особенность металла нашла свое применение в технике. Полезные свойства вольфрама, обусловленные высокой плотностью:

  1. Возможность концентрировать большую массу в малом объеме.
  2. Защита от ионизирующего излучения (радиации).

Первое свойство объясняется внутренним строением металла. Ядро атома содержит 74 протона и 110 нейтронов, т. е. 184 частицы. В Периодической системе химических элементов, в которой атомы расположены по возрастанию атомной массы, вольфрам находится на 74 месте. По этой причине вещество, состоящее из тяжелых атомов, будет иметь большую массу. Способность защищать от радиации присуща всем материалам с высокой плотностью. Это обусловлено тем, что ионизирующее излучение, сталкиваясь с любым препятствием, передает ему часть своей энергии. Более плотные вещества имеют высокую концентрацию частиц в единице объема, поэтому ионизирующие лучи претерпевают больше столкновений и, соответственно, теряют больше энергии. Использование металла базируется на вышеуказанных свойствах.

Применение вольфрама

Высокая плотность — огромное преимущество вольфрама среди других металлов.

Вольфрам находит широкое применение в разных областях промышленности.

Использование, основанное на большой массе металла

Значительная плотность делает вольфрам ценным материалом для балансировки. Изготовленные из него балансировочные грузики уменьшают нагрузку, действующую на детали. Таким образом продлевается их эксплуатационный период. Области применения вольфрама:

  1. Аэрокосмическая сфера. Запчасти из тяжелого металла уравновешивают действующие моменты сил. Поэтому вольфрам используется для изготовления лопастей вертолетов, пропеллеров, рулей направления. По причине того, что материал не обладает магнитными свойствами, он применяется в производстве бортовых электронных систем авиации.
  2. Автомобильная промышленность. Вольфрам применяется там, где необходимо сосредоточить большую массу в малом объеме пространства, например, в автомобильных двигателях, установленных на тяжелых грузовиках, дорогих внедорожниках, машинах, работающих на дизельном топливе. Также вольфрам является выгодным материалом для изготовления коленвалов и маховиков, грузов на шасси. Кроме высокой плотности, металл характеризуется большим модулем упругости, благодаря этим качествам он применяется для гашения колебаний на приводах.
  3. Оптика. Вольфрамовые грузики сложной конфигурации выступают балансирами в микроскопах и других высокоточных оптических инструментах.
  4. Производство спортинвентаря. Вольфрам используется вместо свинца в спортивном оборудовании, потому что, в отличие от последнего, не наносит вреда здоровью и окружающей среде. Например, материал применяется в производстве клюшек для гольфа.
  5. В машиностроении. Из вольфрама делают вибромолоты, которыми забивают сваи. В середине каждого прибора находится вращающийся груз. Он преобразовывает энергию вибраций в силу для забивания. Благодаря наличию вольфрама имеется возможность применять вибромолоты для уплотненного грунта значительной толщины.
  6. Для изготовления высокоточных инструментов. В глубоком сверлении применяются прецизионные приборы, держатель которых не должен поддаваться вибрациям. Этому требованию соответствует вольфрам, имеющий к тому же и высокий модуль упругости. Антивибрационные держатели обеспечивают плавную работу, поэтому их используют в расточных и шлифовальных оправках, в стержнях инструментов. На основе вольфрама изготавливают рабочую часть инструмента, так как он обладает повышенной твердостью.

Использование, основанное на способности защищать от радиации

Коллиматоры из вольфрама в хирургии.

  • По этому критерию вольфрамовые сплавы опережают чугун, сталь, свинец и воду, поэтому из металла делают коллиматоры и защитные экраны, которые используются при радиотерапии. Сплавы из вольфрама не подвержены деформации и отличаются высокой надежностью. Применение многолепестковых коллиматоров дает возможность направить излучение на определенный участок пораженной ткани. Во время терапии в первую очередь делают рентгеновские снимки, чтобы локализовать расположение и определить характер опухоли. Затем лепестки коллиматора перемещаются электродвигателем в нужное положение. Может быть задействовано 120 лепестков, с помощью которых создается поле, повторяющее форму опухоли. Далее на пораженный участок направляются лучи, имеющие высокую радиацию. При этом опухоль получает облучение посредством того, что многолепестковый коллиматор вращается вокруг пациента. Чтобы защитить от радиации соседние здоровые ткани и окружающую среду, коллиматор должен обладать высокой точностью.
  • Разработаны специальные кольцевые коллиматоры из вольфрама для радиохирургии, облучение которых направлено на голову и шею. Прибор осуществляет высокоточную фокусировку гамма-излучения. Также вольфрам входит в состав пластин для компьютерных томографов, экранирующих элементов для детекторов и линейных ускорителей, дозиметрического оборудования и приборов неразрушающего контроля, емкостей для радиоактивных веществ. Вольфрам используется в устройствах для бурения. Из него делают экраны для защиты погружающихся инструментов от рентгеновского и гамма-излучении.

Классификация вольфрамовых сплавов

Такие критерии, как повышенная плотность и тугоплавкость вольфрама, дают возможность использовать его во многих отраслях. Однако современным технологиям иногда требуются дополнительные свойства материала, которыми чистый металл не обладает. Например, его электропроводность меньше, чем у меди, а изготовление детали сложной геометрической формы затруднительно из-за хрупкости материала. В таких ситуациях помогают примеси. При этом их количество часто не превышает 10%. После добавления меди, железа, никеля вольфрам, плотность которого остается очень высокой (не меньше 16,5 г/см³), лучше проводит электрический ток и становится пластичным, что дает возможность хорошо его обрабатывать.

ВНЖ, ВНМ, ВД

В зависимости от состава сплавы по-разному маркируются.

  1. ВНЖ - это сплавы вольфрама, которые содержат никель и железо,
  2. ВНМ - никель и медь,
  3. ВД - только медь.

В маркировке после заглавных букв следуют цифры, указывающие на процентное содержание. Например, ВНМ 3–2 — это вольфрамовый сплав с добавлением 3% никеля и 2% меди, ВНМ 5–3 содержит в примеси 5% никеля и 3% железа, ВД-30 состоит на 30% из меди.

Применение чистого металла и вольфрамсодержащих сплавов основано, главным образом, на их тугоплавкости, твердости и химической стойкости. Чистый вольфрам используется для изготовления нитей электрических ламп накаливания и электронно-лучевых трубок, в производстве тиглей для испарения металлов, в контактах автомобильных распределителей зажигания, в мишенях рентгеновских трубок; в качестве обмоток и нагревательных элементов электрических печей и как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах. Быстрорежущие стали (17,5-18,5% вольфрама), стеллит (на основе кобальта с добавлением Cr, W, С), хасталлой (нержавеющая сталь на основе Ni) и многие другие сплавы содержат вольфрам. Основой при производстве инструментальных и жаропрочных сплавов является ферровольфрам (68-86% W, до 7% Mo и железо), легко получающийся прямым восстановлением вольфрамитового или шеелитового концентратов. «Победит» - очень твердый сплав, содержащий 80-87% вольфрама, 6-15% кобальта, 5-7% углерода, незаменим в обработке металлов, в горной и нефтедобывающей промышленности.

Вольфраматы кальция и магния широко используются во флуоресцентных устройствах, другие соли вольфрама используются в химической и дубильной промышленности. Дисульфид вольфрама представляет собой сухую высокотемпературную смазку, стабильную до 500° С. Вольфрамовые бронзы и другие соединения элемента применяются в изготовлении красок. Многие соединения вольфрама являются отличными катализаторами.

Долгие годы с момента открытия вольфрам оставался лабораторной редкостью, лишь в 1847 Оксланд получил патент на производство вольфрамата натрия, вольфрамовой кислоты и вольфрама из касситерита (оловянного камня). Второй патент, полученный Оксландом в 1857, описывал производство железо-вольфрамовых сплавов, которые составляют основу современных быстрорежущих сталей.

В середине 19 в. предпринимались первые попытки использовать вольфрам в производстве стали, однако долгое время не удавалось внедрить эти разработки в промышленность из-за высокой цены на металл. Возросшая потребность в легированных и высокопрочных сталях привела к запуску производства быстрорежущих сталей на фирме «Вифлеемская Сталь» (Bethlehem Steel). Образцы этих сплавов были впервые представлены в 1900 на Всемирной выставке в Париже.

Технология изготовления вольфрамовых нитей и ее история.

Объемы производства вольфрамовой проволоки имеют небольшую долю среди всех отраслей применения вольфрама, но развитие технологии ее получения сыграло ключевую роль в развитии порошковой металлургии тугоплавких соединений.

С 1878, когда Свон продемонстрировал в Ньюкастле изобретенные им восьми- и шестнадцатисвечевые угольные лампы, шел поиск более подходящего материала для изготовления нитей накаливания. Первая угольная лампа обладала эффективностью всего 1 люмен/ватт, которая была увеличена в следующие 20 лет модификацией методов обработки угля в два с половиной раза. К 1898 светоотдача таких лампочек составляла 3 люмен/ватт. Угольные нити в те времена нагревались пропусканием электрического тока в атмосфере паров тяжелых углеводородов. При пиролизе последних образующийся углерод заполнял поры и неровности нити, придавая ей яркий металлический блеск.

В конце 19 в. фон Вельсбах впервые изготовил металлическую нить для ламп накаливания. Он сделал ее из осмия (Т пл = 2700° С). Осмиевые нити обладали эффективностью 6 люмен/ватт, однако, осмий - редкий и чрезвычайно дорогой элемент платиновой группы, поэтому широкого применения в изготовлении бытовых устройств не нашел. Тантал с температурой плавления 2996° С широко использовался в виде вытянутой проволоки с 1903 по 1911 благодаря работам фон Болтона из фирмы Сименс и Хальске. Эффективность танталовых ламп составляла 7 люмен/ватт.

Вольфрам начал применяться в лампах накаливания в 1904 и вытеснил в этом качестве все остальные металлы к 1911. Обычная лампа накаливания с вольфрамовой нитью обладает свечением 12 люмен/ватт, а лампы, работающие под высоким напряжением - 22 люмен/ватт. Современные флуоресцентные лампы с вольфрамовым катодом имеют эффективность порядка 50 люмен/ватт.

В 1904 на фирме «Сименс-Хальске» попытались применить разработанный для тантала процесс волочения проволоки для более тугоплавких металлов, таких как вольфрам и торий. Жесткость и недостаток ковкости вольфрама не позволили гладко провести процесс. Тем не менее, позже, в 1913-1914, было показано, что расплавленный вольфрам может быть раскатан и вытянут с использованием процедуры частичного восстановления. Электрическую дугу пропускали между вольфрамовым стержнем и частично расплавленной вольфрамовой капелькой, помещенной в графитовый тигель, покрытый изнутри вольфрамовым порошком и находящийся в атмосфере водорода. Тем самым были получены небольшие капли расплавленного вольфрама, около 10 мм в диаметре и 20-30 мм в длину. Хотя и с трудом, но с ними уже можно было работать.

В те же годы Юст и Ханнаман запатентовали процесс изготовления вольфрамовых нитей. Тонкий металлический порошок смешивался с органическим связующим, полученная паста пропускалась через фильеры и нагревалась в специальной атмосфере для удаления связующего, при этом получалась тонкая нить чистого вольфрама.

В 1906-1907 был разработан хорошо известный процесс экструзии, применявшийся до начала 1910-х. Черный вольфрамовый порошок очень тонкого помола смешивался с декстрином или крахмалом до образования пластичной массы. Гидравлическим давлением эта масса продавливалась через тонкие алмазные сита. Получающаяся таким образом нить оказывалась достаточно прочной для того, чтобы быть намотанной на катушки и высушенной. Далее нити разрезались на «шпильки», которые нагревались в атмосфере инертного газа до температуры красного каления для удаления остатков влаги и легких углеводородов. Каждая «шпилька» закреплялась в зажиме и нагревалась в атмосфере водорода до яркого свечения пропусканием электрического тока. Это приводило к окончательному удалению нежелательных примесей. При высоких температурах отдельные маленькие частицы вольфрама сплавляются и образуют однородную твердую металлическую нить. Эти нити эластичны, хотя и хрупки.

В начале 20 в. Юст и Ханнаман разработали другой процесс, отличающийся своей оригинальностью. Угольная нить диаметром 0,02 мм покрывалась вольфрамом путем накаливания в атмосфере водорода и паров гексахлорида вольфрама. Покрытая таким образом нить нагревалась до яркого свечения в водороде при пониженном давлении. При этом вольфрамовая оболочка и углеродное ядро полностью сплавлялись друг с другом, образуя карбид вольфрама. Получающаяся нить имела белый цвет и была хрупкой. Далее нить нагревалась в токе водорода, который взаимодействовал с углеродом, оставляя компактную нить из чистого вольфрама. Нити обладали теми же характеристиками, что и полученные в процессе экструзии.

В 1909 американцу Кулиджу удалось получить ковкий вольфрам без применения наполнителей, а лишь с помощью разумной температурной и механической обработки. Основная проблема в получении вольфрамовой проволоки заключалась в быстром окислении вольфрама при высоких температурах и наличии зернистой структуры в получающемся вольфраме, которая приводила к его хрупкости.

Современное производство вольфрамовой проволоки является сложным и точным технологическим процессом. Исходным сырьем служит порошковый вольфрам, получаемый восстановлением паравольфрамата аммония.

Вольфрамовый порошок, применяемый для производства проволоки, должен иметь высокую чистоту. Обычно смешивают порошки вольфрама различного происхождения, чтобы усреднить качество металла. Смешиваются они в мельницах и во избежание окисления нагретого трением металла в камеру пропускают поток азота. Затем порошок прессуется в стальных пресс-формах на гидравлических или пневматических прессах (5-25 кг/мм 2). В случае использования загрязненных порошков, прессовка получается хрупкой, и для устранения этого эффекта добавляется полностью окисляемое органическое связующее. На следующей стадии производится предварительное спекание штабиков. При нагревании и охлаждении прессовок в потоке водорода их механические свойства улучшаются. Прессовки еще остаются достаточно хрупкими, и их плотность составляет 60-70% от плотности вольфрама, поэтому штабики подвергают высокотемпературному спеканию. Штабик зажимается между контактами, охлаждаемыми водой, и в атмосфере сухого водорода через него пропускается ток для нагрева его почти до температуры плавления. За счет нагревания вольфрам спекается и его плотность возрастает до 85-95% от кристаллического, в то же время увеличиваются размеры зерен, растут кристаллы вольфрама. Затем следует ковка при высокой (1200-1500° С) температуре. В специальном аппарате штабики пропускаются через камеру, которая сдавливается молотом. За одно пропускание диаметр штабика уменьшается на 12%. При ковке кристаллы вольфрама удлиняются, создается фибриллярная структура. После ковки следует протяжка проволоки. Стержни смазываются и пропускаются через сита из алмаза или карбида вольфрама. Степень вытяжки зависит от назначения получаемых изделий. Диаметр получаемой проволоки составляет около 13 мкм.

Химия

Элемент № 74 вольфрам причисляют обычно к редким металлам: его содержание в земной коре оценивается в 0,0055%; его нет в морской воде, его не удалось обнаружить в солнечном спектре. Однако по популярности онможет поспорить со многими отнюдь не редкими металлами, а его минералы были известны задолго до открытия самого элемента. Так, еще в XVII в. во многих европейских странах знали «вольфрам» и «тунгстен» - так называли тогда наиболее распространенные минералы вольфрама - вольфрамит и шеелит. А элементарный вольфрам был открыт в последней четверти XVIII в .

Вольфрамовая руда

Очень скоро этот металл получил практическое значение - как легирующая добавка. А после Всемирной выставки 1900 г. в Париже, на которой демонстрировались образцы быстрорежущей вольфрамовой стали, элемент № 74 стали применять металлурги во всех более или менее промышленно развитых странах. Главная особенность вольфрама как легирующей добавки заключается в том, что он придает стали красностойкость - позволяет сохранить твердость и прочность при высокой температуре. Более того, большинство сталей при охлаждении на воздухе (после выдержки при температуре, близкой к температуре красного каления) теряют твердость. А вольфрамовые - нет.
Инструмент, изготовленный из вольфрамовой стали, выдерживает огромные скорости самых интенсивных процессов металлообработки. Скорость резания таким инструментом измеряется десятками метров в секунду.
Современные быстрорежущие стали содержат до 18% вольфрама (или вольфрама с молибденом), 2-7% хрома и небольшое количество кобальта. Они сохраняют твердость при 700-800° С, в то время как обычная сталь начинает размягчаться при нагреве всего до 200° С. Еще большей твердостью обладают «стеллиты» - сплавы
вольфрам а с хромом и кобальтом (без железа) и особенно карбиды вольфрама - его соединения с углеродом. Сплав «видна» (карбид вольфрама, 5-15% кобальта и небольшая примесь карбида титана) в 1,3 раза тверже обычной вольфрамовой стали и сохраняет твердость до 1000- 1100° С. Резцами из этого сплава можно снимать за минуту до 1500-2000 м железной стружки. Ими можно быстро и точно обрабатывать «капризные» материалы: бронзу и фарфор, стекло и эбонит; при этом сам инструмент изнашивается совсем незначительно.
В начале XX в. вольфрамовую нить стали применять в электрических лампочках: она позволяет доводить накал до 2200° С и обладает большой светоотдачей. И в этом качестве вольфрам совершенно незаменим до наших дней. Очевидно, поэтому электрическая лампочка названа в одной популярной песне «глазком вольфрамовым».

Минералы и руды вольфрама

Вольфрам встречается в природе главным образом в виде окисленных сложных соединений, образованных трехокисыо вольфрама WO 3 и окислами железа и марганца или кальция, а иногда свинца, меди, тория и редкоземельных элементов. Наиболее распространенный минерал, вольфрамит, представляет собой твердый раствор вольфраматов (солей вольфрамовой кислоты) железа и марганца (mFeW0 4 *nMnW0 4). Этот раствор - тяжелые и твердые кристаллы коричневого или черного цвета, в зависимости от того, какое соединение преобладает в их составе. Если больше побнерита (соединения марганца), кристаллы черные, если же преобладает железосодержащий ферберит - коричневые. Вольфрамит парамагнитен и хорошо проводит электрический ток.
Из других минералов вольфрама промышленное значение имеет шеелит - вольфрамат кальция CaW04. Он образует блестящие, как стекло, кристаллы светло-желтого, иногда почти белого цвета. Шеелит немагнитен, но он обладает другой характерной особенностью - способностью к люминесценции. Если его осветить ультрафиолетовыми лучами, он флуоресцирует в темноте ярко-синим цветом. Примесь молибдена меняет окраску свечения шеелита: она становится бледно-синей, а иногда даже кремовой. Это свойство шеелита, используемое в геологической разведке, служит поисковым признаком, позволяющим обнаружить залежи минерала.
Месторождения вольфрамовых руд теологически связаны с областями распространения гранитов . Крупнейшие зарубежные месторождения вольфрамита и шеелита находятся в Китае, Бирме, США, Боливии и Португалии. Наша страна тоже располагает значительными запасами минералов вольфрама, главные их месторождения находятся на Урале, Кавказе и в Забайкалье.
Крупные кристаллы вольфрамита или шеелита - большая редкость. Обычно вольфрамовые минералы лишь вкраплены в древние гранитные породы - средняя концентрация вольфрама в итоге оказывается в лучшем случае 1-2%. Поэтому извлечь вольфрам из руд очень трудно.


Как получают вольфрам

Первая стадия - обогащение руды, отделение ценных компонентов от основной массы - пустой породы. Методы обогащения - обычные для тяжелых руд и металлов: измельчение и флотация с последующими операциями - магнитной сепарацией (для вольфрамитиых руд) и окислительным обжигом.
Полученный концентрат чаще всего спекают с избытком соды, чтобы перевести вольфрам в растворимое соединение - вольфрамат натрия. Другой способ получения этого вещества - выщелачивание; вольфрам извлекают содовым раствором под давлением и при повышенной температуре (процесс идет в автоклаве) с последующей нейтрализацией и осаждением в виде искусственного шеелита, т. е. вольфрамата кальция. Стремление получить именно вольфрамат объясняется тем, что из него сравнительно просто, всего в две стадии:
CaW0 4 → H 2 W0 4 или (NH 4) 2 W0 4 → WO 3 , можно выделить очищенную от большей части примесей окись вольфрама.
Есть еще один способ получения окиси вольфрама - через хлориды. Вольфрамовый концентрат при повышенной температуре обрабатывают газообразным хлором. Образовавшиеся хлориды вольфрама довольно легко отделить от хлоридов других металлов методом возгонки, используя разницу температур, при которых эти вещества переходят в парообразное состояние. Полученные хлориды вольфрама можно превратить в окисел, а можно пустить непосредственно на переработку в элементарный металл.


Превращение окислов или хлоридов в металл - следующая стадия производства вольфрама. Лучший восстановитель окиси вольфрама - водород. При восстановлении водородом получается наиболее чистый металлический вольфрам. Процесс восстановления происходит в трубчатых печах, нагретых таким образом, что по мере продвижения по трубе «лодочка» с W0 3 проходит через несколько температурных зон. Навстречу ей идет поток сухого водорода. Восстановление происходит и в «холодных» (450-600° С) и в «горячих» (750-1100° С) зонах; в «холодных» - до низшего окисла W0 2 , дальше - до элементарного металла. В зависимости от температуры и длительности реакции в «горячей» зоне меняются чистота и размеры зерен выделяющегося на стенках «лодочки» порошкообразного вольфрама.
Восстановление может идти не только под действием водорода. На практике часто используется уголь. Применение твердого восстановителя несколько упрощает производство, однако в этом случае требуется более высокая температура - до 1300-1400° С. Кроме того, уголь и примеси, которые он всегда содержит, вступают в реакции с вольфрамом, образуя карбиды и другие соединения. Это приводит к загрязнению металла. Между тем электротехнике нужен весьма чистый вольфрам. Всего 0,1% железа делает вольфрам хрупким и малопригодным для изготовления тончайшей проволоки.
Получение вольфрама из хлоридов основано на процессе пиролиза. Вольфрам образует с хлором несколько соединений. С помощью избытка хлора все их можно перевести в высший хлорид - WCl 6 , который разлагается на вольфрам и хлор при 1600° С. В присутствии водорода этот процесс идет уже при 1000° С.
Так получают металлический вольфрам, но не компактный, а в виде порошка, который затем прессуют в токе водорода при высокой температуре. На первой стадии прессования (при нагреве до 1100-1300° С) образуется пористый ломкий слиток. Прессование продолжается при еще более высокой температуре, едва не достигающей под конец температуры плавления вольфрама. В этих условиях металл постепенно становится сплошным, приобретает волокнистую структуру, а с ней - пластичность и ковкость.

Главные свойства

Вольфрам отличается от всех остальных металлов особой тяжестью, твердостью и тугоплавкостью. Давно известно выражение: «Тяжелый, как свинец». Правильнее было бы говорить: «Тяжелый, как вольфрам». Плотность вольфрама почти вдвое больше, чем свинца, точнее - в 1,7 раза. При этом атомная масса его несколько ниже: 184 против 207.


По тугоплавкости и твердости вольфрам и его сплавы занимают высшие места среди металлов. Технически чистый вольфрам плавится при 3410° С, а кипит лишь при 6690° С. Такая температура - на поверхности Солнца!
А выглядит «король тугоплавкости» довольно заурядно. Цвет вольфрама в значительной мере зависит от способа получения. Сплавленный вольфрам - блестящий серый металл, больше всего напоминающий платину. Вольфрамовый порошок - серый, темно-серый и даже черный (чем мельче зернение, тем темнее).

Химическая активность

Природный вольфрам состоит из пяти стабильных изотопов с массовыми числами от 180 до 186. Кроме того, в атомных реакторах в результате различных ядерных реакций образуются еще 8 радиоактивных изотопов вольфрама с массовыми числами от 176 до 188; все они сравнительно недолговечны: их периоды полураспада - от нескольких часов до нескольких месяцев.
Семьдесят четыре электрона атома вольфрама расположены вокруг ядра таким образом, что шесть из них находятся на внешних орбитах и могут быть отделены сравнительно легко. Поэтому максимальная валентность вольфрама равна шести. Однако строение этих внешних орбит особое - они состоят как бы из двух «ярусов»: четыре электрона принадлежат предпоследнему уровню -d, который оказывается, таким образом, заполненным меньше чем наполовину. (Известно, что число электронов в заполненном уровне d равно десяти.) Эти четыре электрона (очевидно, неспарепные) способны легко образовывать химическую связь. Что же касается двух «самых наружных» электронов, то их оторвать совсем легко.
Именно особенностями строения электронной оболочки объясняется высокая химическая активность вольфрама. В соединениях он бывает не только шестивалентным, но и пяти-, четырех-, трех-, двух- и нульвалентным. (Неизвестны лишь соединения одновалентного вольфрама).
Активность вольфрама проявляется в том, что он вступает в реакции с подавляющим болишинстом элементов, образуя множество простых и сложных соединений. Даже в сплавах вольфрам часто оказывается химически связанным. А с кислородом и другими окислителями он взаимодействует легче, чем большинство тяжелых металлов.
Реакция вольфрама с кислородом идет при нагревании, особенно легко - в присутствии паров воды. Если вольфрам нагревать на воздухе, то при 400-500° С на поверхности металла образуется устойчивый низший окисел W0 2 ; вся поверхность затягивается коричневой пленкой. При более высокой температуре сначала получается промежуточный окисел W 4 O 11 синего цвета, а затем лимонножелтая трехокись вольфрама W0 3 , которая возгоняется при 923° С.


Сухой фтор соединяется с тонкоизмельченным вольфрамом уже при небольшом нагревании. При этом образуется гексафторид WF6 - вещество, которое плавится при 2,5° С и кипит при 19,5° С. Аналогичное соединение - WCl 6 - получается при реакции с хлором, но лишь при 600° С. Сине-стального цвета кристаллы WCl 6 плавятся при 275° С и кипят при 347° С. С бромом и йодом вольфрам образует малоустойчивые соединения: пента- и дибромид, тетра- и дииоднд.
При высокой температуре вольфрам соединяется с серой, селеном и теллуром, с азотом и бором, с углеродом и кремнием. Некоторые из этих соединений отличаются большой твердостью и другими замечательными свойствами.
Очень интересен карбонил W(CO) 6 . Здесь вольфрам соединен с окисью углерода и, следовательно, обладает нулевой валентностью. Карбонил вольфрама неустойчив; его получают в специальных условиях. При 0° он выделяется из соответствующего раствора в виде бесцветных кристаллов, при 50° С возгоняется, а при 100° С полностью разлагается. Но именно это соединение позволяет получить тонкие и плотные покрытия из чистого вольфрама.
Не только сам вольфрам, но и многие его соединения весьма активны. В частности, окись вольфрама WO 3 способна к полимеризации. В результате образуются так называемые изополисоединения и гетерополисоединения: молекулы последних могут содержать более 50 атомов.


Сплавы

Почти со всеми металлами вольфрам образует сплавы, однако получить их не так-то просто. Дело в том, что общепринятые методы сплавления в данном случае, как правило, неприменимы. При температуре плавления вольфрама большинство других металлов уже превращается в газы пли весьма летучие жидкости. Поэтому сплавы, содержащие вольфрам, обычно получают методами порошковой металлургии.
Во избежание окисления все операции проводят в вакууме или в атмосфере аргона. Делается это так. Сначала смесь металлических порошков прессуют, затем спекают и подвергают дуговой плавке в электрических печах. Иногда прессуют и спекают один вольфрамовый порошок, а полученную таким путем пористую заготовку пропитывают жидким расплавом другого металла: получаются так называемые псевдосплавы. Этим методом пользуются, когда нужно получить сплав вольфрама с медью и серебром.


С хромом и молибденом, ниобием и танталом вольфрам дает обычные (гомогенные) сплавы при любых соотношениях. Уже небольшие добавки вольфрама повышают твердость этих металлов и их устойчивость к окислению.
Сплавы с железом, никелем и кобальтом более сложны. Здесь, в зависимости от соотношения компонентов, образуются либо твердые растворы, либо интерметаллические соединения (химические соединения металлов), а в присутствии углерода (который всегда имеется в стали) - смешанные карбиды вольфрама и железа, придающие металлу еще большую твердость.
Очень сложные соединения образуются при сплавлении вольфрама с алюминием, бериллием и титаном: в них на один атом вольфрама приходится от 2 до 12 атомов легкого металла. Эти сплавы отличаются жаропрочностью и устойчивостью к окислению при высокой температуре.
На практике чаще всего применяются сплавы вольфрама не с одним каким-либо металлом, а с несколькими. Таковы, в частности, кислотостойкие сплавы вольфрама с хромом и кобальтом или никелем (амалой); из них делают хирургические инструменты. Лучшие марки магнитной стали содержат вольфрам, железо и кобальт. А в специальных жаропрочных сплавах, кроме вольфрама, имеются хром, никель и алюминий.
Из всех сплавов вольфрама наибольшее значение приобрели вольфрамсодержащие стали. Они устойчивы к истиранию, не дают трещин, сохраняют твердость вплоть до температуры красного каления. Инструмент из них не только позволяет резко интенсифицировать процессы металлообработки (скорость обработки металлических изделий повышается в 10-15 раз), но и служит намного дольше, чем тот же инструмент из другой стали.
Вольфрамовые сплавы не только жаропрочны, но и жаростойки. Они не корродируют при высокой температуре под действием воздуха, влаги и различных химических реагентов. В частности, 10% вольфрама, введенного в никель, достаточно, чтобы повысить коррозионную устойчивость последнего в 12 раз! А карбиды вольфрама с добавкой карбидов тантала и титана, сцементированные кобальтом, устойчивы к действию многих кислот - азотной, серной и соляной - даже при кипячении. Им опасна только смесь плавиковой и азотной кислот.

Вольфрам в современной технике играет исключительно важную роль. Он применяется в сталелитейной промышленности, при производстве твердых сплавов, при производстве кислотоупорных и других специальных сплавов, в электротехнике, при производстве красителей, в качестве химических реактивов и пр.

Около 70% всего добываемого вольфрама идет на производство ферровольфрама, в виде которого он вводится в сталь. В наиболее богатых вольфрамом и наиболее распространенных вольфрамовых сталях(в быстрорежущих) вольфрам образует сложные вольфрамсодержащие карбиды, увеличивающие твердость стали, в особенности при повышенных температурах(красностойкость), Известно, что введение в практику работы металлообрабатывающих заводов резцов из стали, содержащей вольфрам, позволило во много раз увеличить скорости резания. В настоящее время резцы из быстрорежущей стали уступают место резцам из металлокерамических твердых сплавов, изготовляемых на основе карбида вольфрама с добавлением цементирующей добавки.В некоторые твердые сплавы вводятся также карбиды титана, тантала и ниобия. Современные скорости резания, достигнутые новаторами производства, получены именно с резцами из твердых сплавов.Сплавы вольфрама с другими металлами имеют самое разнообразное применение: никельвольфрамохромовый сплав отличается кислотоупорными свойствами. Обращают на себя внимание сплавы вольфрама, обладающие повышенной жаропрочностью: например, добавка 1% ниобия, тантала, молибдена, образующих с вольфрамом твердый раствор, повышает температуру плавления металла выше 3300 °C., тогда как добавка 1% железа, весьма мало растворимого в вольфраме, понижает температуру плавления до 1640°C. В США широко развернуты исследования в этой области.

Металлический вольфрам находит разнообразное применение в электро-и рентгенотехнике. Из вольфрама изготовляют нити накала электрических ламп. Вольфрам для этой цели особенно пригоден благодаря большой тугоплавкости и очень малой летучести: при температурах порядка 2500°C, при которых работают нити накала, упругость паров вольфрама не достигает 1 мм рт.ст. Из металлического вольфрама изготовляют также нагреватели для электрических печей, выдерживающие температуры до 3000°C.Металлический вольфрам применяется для антикатодов рентгеновских трубок, для различных деталей электровакуумной аппаратуры, для радиоприборов, выпрямителей тока и.т.д. Тонкие вольфрамовые нити применяются в гальванометрах. Подобные же нити применяются для хирургических целей. Наконец, из металлического вольфрама изготовляются различные спиральные пружины, а также детали, для которых требуется материал, устойчивый по отношению к различным химическим воздействиям.

Соединения вольфрама применялись очень широко как красители. В Китае сохранились старинные, изделия из фарфора, окрашенного в необычный цвет "персика", исследования показали, что краска содержит вольфрам.

Соли вольфрама применяются для придания огнестойкости некоторым тканям. Тяжелые дорогие шелка обязаны своей красотой вольфрамовым солям, которыми они пропитаны.

Чистые вольфрамовые препараты применяются в химическом анализе как реактивы на алкалоиды и другие вещества. Соединения вольфрама применяются также в качестве катализаторов.

  1. Мы предлагаем следующую продукцию из вольфрама: вольфрамовую полосу, вольфрамовую проволоку, вольфрамовый пруток, вольфрамовый штабик.

Вольфрам относится к тугоплавким металлам, которые сравнительно мало распространены в земной коре. Так, содержание в земной коре (в %) вольфрама примерно 10 -5 , рения 10 -7 , молибдена 3.10 -4 , ниобия 10 -3 , тантала 2.10 -4 и ванадия 1,5.10 -2 .

Тугоплавкие металлы являются переходными элементами и располагаются в IV, V, VI и VII группах (подгруппа А) периодической системы элементов. С увеличением атомного номера возрастает температура плавления тугоплавких металлов в каждой из подгрупп.

Элементы VA и VIA групп (ванадий, ниобий, тантал, хром, молибден и вольфрам) являются тугоплавкими металлами с объемно-центрированной кубической решеткой в отличие от других тугоплавких металлов, имеющих гранецентрированную и гексагональную плотно упакованную структуру.

Известно, что главным фактором, определяющим кристаллическую структуру и физические свойства металлов и сплавов, является природа их межатомных связей. Тугоплавкие металлы характеризуются высокой прочностью межатомной связи и, как следствие, высокой температурой плавления, повышенной механической прочностью и значительным электрическим сопротивлением.

Возможность исследования металлов методом электронной микроскопии позволяет изучать структурные особенности атомного масштаба, выявляет взаимосвязи между механическими свойствами и дислокациями, дефектами упаковки и др. Полученные данные показывают, что характерные физические свойства, отличающие тугоплавкие металлы от обычных, определяются электронной структурой их атомов. Электроны могут в различной степени переходить от одного атома к другому, при этом вид перехода отвечает определенному типу межатомной связи. Особенность электронного строения определяет высокий уровень межатомных сил (связей), высокую температуру плавления, прочность металлов и их взаимодействие с другими элементами и примесями внедрения. У вольфрама химически активная оболочка по энергетическому уровню включает электроны 5 d и 6 s.

Из тугоплавких металлов наибольшую плотность имеет вольфрам - 19,3 г/см 3 . Хотя при использовании в конструкциях ^большую плотность вольфрама можно рассматривать как отрицательный показатель, все же повышенная прочность при высоких температурах позволяет снизить массу изделий из вольфрама за счет уменьшения их размеров.

Плотность тугоплавких металлов в большой степени зависит от их состояния. Например, плотность спеченного штабика вольфрама колеблется в пределах 17,0-18,0 г/см 3 , а плотность кованого штабика со степенью деформации 75% составляет 18,6-19,2 г/см 3 . То же наблюдается и у молибдена: спеченный штабик имеет плотность 9,2-9,8 г/см 3 , кованый со степенью деформации 75% -9,7-10,2 г/см 3 и литой 10,2 г/см 3 .

Некоторые физические свойства вольфрама, тантала, молибдена и ниобия для сравнения приведены в табл. 1. Теплопроводность вольфрама составляет менее половины теплопроводности меди, но она намного выше, чем у железа или никеля.

Тугоплавкие металлы групп VA, VIA, VIIА периодической системы элементов по сравнению с другими элементами имеют меньший коэффициент линейного расширения. Наименьший коэффициент линейного расширения имеет вольфрам, что указывает на высокую стабильность его атомной решетки и является уникальным свойством этого металла.

Вольфрам имеет теплопроводность примерно в 3 раза меньшую, чем электропроводность отожженной меди, но она выше, чем у железа, платины и фосфоритной бронзы.

Для металлургии большое значение имеет плотность металла в жидком состоянии, так как эта характеристика определяет скорость движения по каналам, процесс удаления газообразных и неметаллических включений и влияет на образование усадочной раковины и пористости в слитках. У вольфрама эта величина выше, чем у других тугоплавких металлов. Однако другая физическая характеристика - поверхностное натяжение жидких тугоплавких металлов при температуре плавления - отличается меньше (см. табл. 1). Знание этой физической характеристики необходимо при таких процессах, как нанесение защитных покрытий, при пропитке, плавку и литье.

Важным литейным свойством металла является жидкотекучесть. Если для всех металлов эта величина определяется при заливке жидкого металла в спиральную форму при температуре заливки выше температуры плавления на 100-200° С, то жидкотекучесть вольфрама получена экстраполяцией эмпирической зависимости этой величины от теплоты плавления.

Вольфрам устойчив в различных газовых средах, кислотах и некоторых расплавленных металлах. При комнатной температуре вольфрам не взаимодействует с соляной, серной и фосфорной кислотами, не подвергается воздействию растворенной азотной кислоты и в меньшей степени, чем молибден, реагирует на смесь азотной и фтористоводородной кислот. Вольфрам обладает высокой коррозионной стойкостью в среде некоторых щелочей, например в среде гидроокиси натрия и калия, в которых проявляет стойкость до температуры 550° С. При действии расплавленного натрия он устойчив до 900° С, ртути - до 600°С, галлия до 800 и висмута до 980° С. Скорость коррозии в этих жидких металлах не превышает 0,025 мм/год. При температуре 400-490° С вольфрам начинает окисляться в среде воздуха и в кислороде. Слабая реакция происходит при нагреве до 100°С в соляной,азотной и плавиковой кислотах. В смеси плавиковой и азотной кислот идет быстрое растворение вольфрама. Взаимодействие с газовыми средами начинается при температурах (°С): с хлором 250, с фтором 20. В углекислом газе вольфрам окисляется при 1200° С, в аммиаке реакция не происходит.

Закономерность окисления тугоплавких металлов определяется в основном температурой. Вольфрам до 800-1000° С имеет параболическую закономерность окисления, а свыше 1000° С - линейную.

Высокая коррозионная стойкость в жидкометаллических средах (натрий, калий, литий, ртуть) позволяет применять вольфрам и его сплавы в энергетических установках.

Прочностные свойства вольфрама зависят от состояния материала и температуры. Для кованых прутков вольфрама предел прочности после рекристаллизации меняется в зависимости от температуры испытаний от 141 кгс/мм 2 при 20° С до 15,5 кгс/мм 2 при 1370° С. Полученный методом порошковой металлургии вольфрам при изменении температуры от 1370 до 2205° С имеет? b = 22,5?6,3 кгс/мм 2 . Прочность вольфрама особенно увеличивается в процессе холодной деформации. Проволока диаметром 0,025 мм имеет предел прочности 427 кгс/мм 2 .

Твердость деформированного технически чистого вольфрама HВ 488, отожженного НВ 286. При этом такая высокая твердость сохраняется вплоть до температур, близких к точке плавления, и в значительной степени зависит от чистоты металла.

Модуль упругости приближенно связан с атомным объемом температуры плавления

где T пл - абсолютная температура плавления; V aТ - атомный объем; К - константа.

Отличительной особенностью вольфрама среди металлов является также высокая объемная деформация, которая определяется из выражения

где Е - модуль упругости первого рода, кгс/мм 2 ; ?-коэффициент поперечной деформации.

Табл. 3 иллюстрирует изменение объемной деформации для стали, чугуна и вольфрама, рассчитанной по приведенному выше выражению.

Пластичность технически чистого вольфрама при 20 е С составляет менее 1 % и растет после зонной электронно-лучевой очистки от примесей, а также при легировании его добавкой 2% окиси тория. С увеличением температуры пластичность повышается.

Большая энергия межатомных связей металлов групп IV, V, VIA определяет их высокую прочность при комнатной и повышенных температурах. Механические свойства тугоплавких металлов существенно зависят от их чистоты, способов получения, механической и термической обработки, вида полуфабрикатов и других факторов. Большая часть сведений о механических свойствах тугоплавких металлов, опубликованных в литературе, получена на недостаточно чистых металлах, так как плавку в условиях вакуума начали применять сравнительно недавно.

На рис. 1 показана зависимость температуры плавления тугоплавких металлов от положения в периодической системе элементов.

Сравнение механических свойств вольфрама после дуговой плавки и вольфрама, полученного методом порошковой металлургии, показывает, что хотя их предел прочности отличается незначительно, однако более пластичным оказывается вольфрам дуговой плавки.

Твердость по Бринеллю вольфрама в виде спеченного штабика составляет НВ 200-250, а прокатанного нагартованного листа НВ 450-500, твердость молибдена равна соответственно НВ 150- 160 и НВ 240-250.

Легирование вольфрама проводят с целью повышения его пластичности, для этого используют прежде всего элементы замещения. Все больше внимания уделяют попыткам повысить пластичность металлов группы VIA добавками небольших количеств элементов групп VII и VIII. Повышение пластичности объясняют тем, что при легировании переходных металлов добавками в сплаве создается неоднородная электронная плотность вследствие локализации электронов легирующих элементов. При этом атом легирующего элемента изменяет силы межатомной связи в прилегающем объеме растворителя; протяженность такого объема должна зависеть от электронной структуры легирующего и легируемого металлов.

Трудность создания вольфрамовых сплавов состоит в том, что пока не удается при повышении прочности обеспечить необходимую пластичность. Механические свойства вольфрамовых сплавов, легированных молибденом, танталом, ниобием и окисью тория (при кратковременных испытаниях), приведены в табл. 4.

Легирование вольфрама молибденом позволяет получать сплавы, которые по своим прочностным свойствам превосходят нелегированный вольфрам вплоть до температур 2200° С (см. табл. 4). При повышении содержания тантала с 1,6 до 3,6% при температуре 1650°С прочность увеличивается в 2,5 раза. Это сопровождается уменьшением удлинения в 2 раза.

Разработаны и осваиваются дисперсионно упрочненные и сложнолегированные сплавы на основе вольфрама, которые содержат молибден, ниобий, гафний, цирконий, углерод. Например, следующие составы: W - 3% Mo - 1 % Nb; W - 3% Mo - 0,1% Hf; W - 3% Mo - 0,05% Zr; W - 0,07% Zr - 0,004% B; W - 25% Mo - 0,11 % Zr - 0,05% C.

Сплав W - 0,48% Zr-0,048% С имеет? b = 55,2 кгс/мм 2 при 1650° С и 43,8 кгс/мм 2 при 1925° С.

Высокие механические свойства имеют вольфрамовые сплавы, содержащие тысячные доли процента бора, десятые доли процента циркония, и гафния и около 1,5% ниобия. Прочность этих сплавов на разрыв при высоких температурах составляет 54,6 кгс/мм 2 при 1650° С, 23,8 кгс/мм 2 при 2200° С и 4,6 кгс/мм 2 при 2760° С. Однако температура перехода (около 500° С) таких сплавов из пластического состояния в хрупкое достаточно высока.

В литературе имеются сведения о сплавах вольфрама с 0,01 и 0,1% С, которые характеризуются пределом прочности, превышающим в 2-3 раза предел прочности рекристаллизованного вольфрама.

Рении существенно повышает жаропрочность сплавов вольфрама (табл. 5).


Очень давно и в широких масштабах применяется вольфрам и его сплавы в электротехнической и электровакуумной технике. Вольфрам и его сплавы являются основным материалом для изготовления нитей накаливания, электродов, катодов и других элементов конструкций мощных электровакуумных приборов. Высокая эмиссионная способность и светоотдача в накаленном состоянии, низкая упругость пара делают вольфрам одним из важнейших материалов для этой отрасли. В электровакуумных приборах для изготовления деталей, работающих при низких температурах, не проходящих предварительную обработку при Температуре выше 300° С, применяют чистый (без присадок) вольфрам.

Присадки различных элементов существенно изменяют свойства вольфрама. Это дает возможность создавать сплавы вольфрама с необходимыми характеристиками. Например, для деталей электровакуумных приборов, которые требуют применения непровисающего вольфрама при температурах до 2900° С и с высокой температурой первичной рекристаллизации, используют сплавы с кремнещелочными или алюминиевыми присадками. Кремнещелочные и ториевые присадки повышают темпера-туру рекристаллизации и увеличивают прочность вольфрама при высоких температурах, что позволяет изготовлять детали, работающие при температуре до 2100° С в условиях повышенных механических нагрузок.

Катоды электронных и газоразрядных приборов, крючки и пружины генераторных ламп с целью повышения эмиссионных свойств изготовляют из вольфрама с присадкой окиси тория (например, марок ВТ-7, ВТ-10, ВТ-15, с содержанием окиси тория соответственно 7, 10 и 15%).

Высокотемпературные термопары изготовляют из сплавов вольфрама с рением. Вольфрам без присадок, в котором допускается повышенное содержание примесей, применяют при изготовлении холодных деталей электровакуумных приборов (вводы в стекло, траверсы). Электроды импульсных ламп и холодные катоды газоразрядных ламп рекомендуется делать из сплава вольфрама с никелем и барием.

Для работы при температурах выше 1700° С следует применять сплавы ВВ-2 (вольфрамониобиевые). Интересно отметить, что при кратковременных испытаниях сплавы с содержанием ниобия от 0,5 до 2% имеют предел прочности при 1650°С в 2-2,5 раза выше нелегированного вольфрама. Наиболее прочным является сплав вольфрама с 15% молибдена. Сплавы W-Re-Th O 2 обладают хорошей обрабатываемостью по сравнению со сплавами W - Re; добавление двуокиси тория делает возможной такую обработку, как точение, фрезерование, сверление.

Легирование вольфрама рением повышает его пластичность, прочностные же свойства с ростом температуры становятся примерно одинаковыми. Добавки в сплавы вольфрама мелкодисперсных окислов повышают их пластичность. Кроме того, эти добавки значительно улучшают обрабатываемость резанием.

Сплавы вольфрама с рением (W - 3% Re; W - 5% Re; W - 25% Re) применяют для измерения и контроля температуры до 2480° С при производстве стали и в других видах техники. Увеличивается применение сплавов вольфрама с рением при изготовлении антикатодов в рентгеновских трубках. Молибденовые антикатоды, покрытые этим сплавом, работают под большой нагрузкой и имеют более длительный срок службы.

Высокая чувствительность вольфрамовых электродов к изменению концентрации водородных ионов позволяет применять их для потенциометрического титрования. Такие электроды используют для контроля воды и различных растворов. Они просты по конструкции и имеют малую величину электрического сопротивления, что делает перспективным их применение в качестве микроэлектродов при исследовании кислотостойкости приэлектродного слоя в электрохимических процессах.

Недостатками вольфрама являются его низкая пластичность (?<1%), большая плотность, высокое поперечное сечение захвата тепловых нейтронов, плохая свариваемость, низкая ока-линостойкость и плохая обрабатываемость резанием. Однако легирование его различными элементами позволяет улучшить эти характеристики.

Ряд деталей для электротехнической промышленности и сопловые вкладыши двигателей изготовляют из вольфрама, пропитанного медью или серебром. Взаимодействие тугоплавкой твердой фазы (вольфрама) с пропитывающим металлом (медью или серебром) такое, что взаимная растворимость металлов практически отсутствует. Краевые углы смачивания вольфрама жидкой медью и серебром достаточно малы по причине большой поверхностной энергии вольфрама, и этот факт улучшает проникновение серебра или меди. Вольфрам, пропитанный серебром или медью, производили первоначально двумя методами: полным погружением заготовки из вольфрама в расплавленный металл или частичным погружением подвешенной заготовки из вольфрама. Есть также методы пропитки с использованием гидростатического давления жидкости или вакуумного всасывания.

Изготовление из вольфрама электротехнических контактов, пропитанных серебром или медью, осуществляют следующим образом. Сначала производят прессование порошка вольфрама и его спекание при определенных технологических режимах. Затем полученную заготовку пропитывают. В зависимости от полученной пористости заготовки меняется доля пропитывающего вещества. Так, содержание меди в вольфраме может меняться от 30 до 13% при изменении удельного давления прессования от 2 до 20 тс/см 2 . Технология получения пропитанных материалов довольно проста, экономична, и качество таких контактов выше, так как один из компонентов дает материалу высокую твердость, эрозионную стойкость, большую температуру плавления, а другой повышает электропроводность.

Хорошие результаты получают при применении пропитанного вольфрама медью или серебром для изготовления сопловых вкладышей твердотопливных двигателей. Повышение таких свойств пропитанного вольфрама, как теплопроводность и электропроводность, коэффициента термического расширения, значительно увеличивает долговечность двигателя. Кроме того, испарение пропитывающего металла из вольфрама во время работы двигателя имеет положительное значение, снижая тепловые потоки и уменьшая эрозионное воздействие продуктов сгорания.

Порошок вольфрама применяют при изготовлении пористых материалов для деталей электростатического ионного двигателя. Применение вольфрама для этих целей позволяет улучшить его основные характеристики.

Теплоэрозионные свойства сопел, изготовленных из вольфрама, упрочненного дисперсными окислами ZrO2, MgO2, V2O3, НfO 2 , повышаются по сравнению с соплами из спеченного вольфрама. После соответствующей подготовки на поверхность вольфрама для снижения высокотемпературной коррозии наносят гальванические покрытия, например покрытие никелем, которое выполняют в электролите, содержащем 300 г/л сернокислого натрия, 37,5 г/л борной кислоты при плотности тока 0,5-11 А/дм 2 , температуре 65° С и рН = 4.