Типы статистических шкал. Моосмюллер Г., Ребик Н.Н. Маркетинговые исследования с SPSS - файл n1.doc Измерение, шкалы и статистика

  • Туровец О.Г. Маркетинговые исследования рынка: практикум (Документ)
  • Беляев В.И. Маркетинг: основы теории и практики (Документ)
  • Зубец А.Н. Маркетинговые исследования страхового рынка (Документ)
  • Методическое пособие - SPSS: компьютерная обработка данных (Документ)
  • Беляевский И.К. Маркетинговые исследования (Документ)
  • Алексеев А.А. Маркетинговые исследования на рынке услуг (Документ)
  • n1.doc

    2.3. ТИПЫ ШКАЛ ИЗМЕРЕНИЯ ПЕРЕМЕННЫХ

    Для работы с данными в SPSS важно знать, по шкале какого типа измеряются исследуемые переменные. Это необходимо для выбора метода анализа данных и определения возможности расчета статистических показателей (табл. 2.3).

    Существует четыре типа шкал измерения переменных:

    Номинальная шкала.

    Порядковая шкала.

    Интервальная шкала.

    Примеры переменных, измеряемых по шкалам разных типов

    Относительная шкала.

    Таблица 2.3


    Шкала

    Переменная

    Значения переменной

    Номинальная

    Пол

    (дихотомическая переменная)


    • «1» = мужской

    • «2» = женский

    Производитель продукта

    «X»


    • «1» = производитель А

    • «2» производитель В

    • «3» производитель С

    Порядковая

    Класс полета

    • «1» = первый класс

    • «2» = бизнес-класс

    • «3» =эконом-класс

    Категории потребителей по уровню дохода

    • «1» = до 1000 евро

    • «2» = от 1001 до 3000 евро

    • «3» = свыше 3000 евро

    Интервальная

    Коэффициент интеллекта

    (IQ)


    ...«120»...

    Относительная

    Уровень дохода

    ... «2100» евро...


    Номинальная шкала характеризуется самым низким уровнем измерения переменных. Все значения переменной, измеряемой по номинальной шкале, находятся на одном уровне. По этой шкале измеряются, как правило, качественные характеристики объекта исследования. Между значениями переменной, измеряемой по номинальной шкале, не существует логического порядка. Например, в качестве ответа на вопрос анкеты: «Какого производителя продукта «X» вы предпочитаете?» - может быть предложено несколько вариантов: «Производитель А», «Производитель В», «Производитель С» и т.д. В этом случае, с точки зрения исследователей, все предложенные производители являются рав нозначными. Числовые коды («1», «2», «3»...) могут присваиваться значениям метки переменной в любом порядке.

    Переменные, измеряемые по номинальной шкале и имеющие всего два значения (например, «мужчины» и «женщины»), называются дихотомическими.

    Порядковая шкала является второй по уровню измерения переменных. Значения переменной, измеряемой по порядковой шкале, не являются равнозначными, они находятся на равных уровнях по отношению друг к другу и подчиняются логическому числовому порядку.

    Порядковая шкала характеризуется низким уровнем измерения переменных, поскольку является шкалой с неравными интервальными отрезками. Совершенно четко можно утверждать, что уровень обслуживания авиапассажиров первого класса выше, чем бизнес-класса, но насколько именно, неизвестно. Также разница в обслуживании между первым и бизнес-клас- сом, между бизнес- и эконом-классом может быть различной (см. табл. 2.3).

    Низкий уровень измерения переменных по порядковой шкале можно проиллюстрировать на примере переменной «Категории потребителей по уровню дохода». Потребители примерно с одинаковым уровнем дохода (например, 950 и 1050 евро) оказываются в разных категориях, а потребители с существенной разницей по уровню дохода (например, 1050 и 2950 евро) оказываются в одной категории.

    Интервальная шкала является третьей по уровню измерения переменных. В отличие от порядковой шкалы она является шкалой с равными интервальными отрезками. Это позволяет осуществлять количественное сравнение значений переменной, т.е. можно определить, насколько одно значение больше или меньше (лучше или хуже, длиннее или короче и т.д.) другого.

    Характерной чертой интервальной шкалы является отсутствие «естественного нуля», т.е. исходная точка измерения является относительной. Примерами интервальной шкалы являются шкала Цельсия и календарь. По шкале Цельсия за «0» принята температура замерзания воды, однако за «0» можно было принять любую другую температуру. Существуют также различные календари с одинаковым количеством дней в году, но разным временем начала года.

    В маркетинговых исследованиях очень часто используется рейтинговая шкала, когда респондентам предлагается оценить по балльной шкале (например, от 1 до 7 баллов) утверждение, продукт, бренд и т.п. Строго говоря, рейтинговая шкала является порядковой, поскольку балльные оценки субъективны. Одинаковые балльные оценки в действительности отображают разный уровень измеряемой переменной. Например, студенты, получившие одинаковые оценки на экзамене, в действительности могут иметь разный уровень знаний.

    Очень часто при проведении исследований шкала бапльных оценок рассматривается как интервальная. В основе этого лежит предположение, что интервальные отрезки шкалы балльных оценок одинаковы. Это дает возможность рассчитать соеднее значение переменной (например, средний балл успеваемости студентов). Расчет средней величины (среднеарифметической) для показателя, измеряемого по порядковой шкале, невозможен. Например, не существует показателя «средний класс» полета (см. табл. 2.3).

    Относительная шкала характеризуется самым высоким уровнем измерения переменных. Ее основное отличие от интервальной шкалы заключается в существовании «естественного нуля», который можно интерпретировать как отсутствие значения переменной. Например, если заработная плата равна нулю, это значит, что ее не выплачивают.

    По относительной шкале измеряются количественные характеристики. Это могут быть как физические характеристики (объем, вес, скорость и пр.), так и экономические характеристики (доход, издержки, цена и пр.).

    Относительная шкала получила свое название благодаря возможности сравнения значений переменной по отношению друг к другу, что невозможно при использовании интервальной шкалы измерения. Например, нельзя сказать, что человек, у которого коэффициент интеллекта (iQ) равен 160, в два раза умнее человека у которого этот показатель составляет 80. Но можно сказать, что заработная плата 1000 евро в два раза больше заработной платы 2000 евро.

    При выборе типа шкалы измерения переменных в SPSS (столбец « Measure » во вкладке редактора данных «Variable View ») интервальная шкала и шкала отношений объединяются в один вид - метрическую шкалу ( Scale ).

    При построении в SPSS интерактивных графиков номинальная ( Nominal ) и порядковая ( Ordinal ) шкалы объединяются в «категориальный» тип (табл. 2.4).

    Таблица 2.4


    Шкала

    Характеристики

    Категориаль-ная

    Номинальная {Nominal)

    Служит для классификации качественных показателей. Все значения измеряемой переменной равнозначны

    Порядковая ( Ordinal )

    Служит для построения значений измеряемой переменной в определенной последовательности. Шкала с неравными интервальными отрезками

    Метрическая (Scale)

    Интервальная

    Шкала с равными интервальными отрезками и условной точкой отсчета

    Относительная

    Шкала с равными интервальными отрезками и безусловной точкой отсчета


    Чем выше уровень измерения переменной, тем богаче ее информационная содержательность и тем больше возможностей осуществления расчетов и определения статистических показателей.

    Числовые коды («1», «2», «3»...) значений метки переменной, измеряемой по номинальной или порядковой шкале, не могут рассматриваться как числа, они представляют собой лишь некие числовые символы. Поскольку они не являются числами, с ними нельзя производить никаких арифметических операций (сложение, вычитание, деление, умножение).

    Что касается статистических показателей, характеризующих распределение величины, измеряемой по номинальной шкале, можно провести частотный анализ (Frequencies ) и определить моду ( Mode ). Частоты показывают, например, сколько респондентов предпочитают того или иного производителя продукта «Л». Мода обозначает самую многочисленную группу респондентов, предпочитающих определенного производителя продукта «Л».

    Для переменных, измеряемых по порядковой шкале, кроме вышеуказанных статистических показателей можно определить медиану и средневзвешенное. Значения меток переменной, измеряемой по интервальной шкале, рассматриваются как числа. С ними можно производить такие арифметические операции, как сложение и вычитание.

    Что касается возможности расчета статистических показателей, характеризующих распределение переменной, измеряемой по интервальной шкале, кроме моды и медианы можно также определить стандартное отклонение ( Std . deviation ) и среднеарифметическое ( Mean ). (Средневзвешенное значение переменных с интервальной шкалой равно среднему арифметическому.)

    При расчете статистических показателей, характеризующих распределение переменной, измеряемой по интервальной шкале, не рассчитывается такой показатель, как сумма ( Sum ). Например, не рассчитывается «суммарный коэффициент интеллекта» для группы студентов, такого показателя не существует.

    Значения меток переменной, измеряемой по шкале отношений, выражаются в числах, с ними можно производить любые арифметические операции. Также можно определять любые статистические показатели, характеризующие распределение переменной.

    Возможна трансформация имеющихся данных, измеряемых по шкале более высокого уровня, в данные, измеряемые по шкале более низкого уровня, но не наоборот. Например, значения переменной «Уровень дохода», измеряемой по относительной шкале, можно трансформировать в значения переменной «Категории потребителей по уровню дохода», измеряемой по порядковой шкале (см. табл. 2.3). Подобная трансформация данных, производимая в целях упрощения процедуры анализа и наглядности представления результатов, неизбежно связана с частичной потерей информации и снижением точности расчетов.

    На практике, в том числе при применении SPSS , различие между переменными, измеряемыми по интервальной и относительной шкалам, обычно несущественно.

    Во многих учебниках по SPSS метрические переменные (Scale) определяются как интервальные.

    ип шкалы измерения переменных определяет возможность применения того или иного метода анализа данных. Все методы статистического анализа делятся на две группы:

    методы оценки связи между переменными;

    методы выявления структуры данных.

    Методы выявления структуры данных характеризуются тем, что исходные данные для проведения анализа не содержат информации (предположений) о существовании взаимосвязей между исследуемыми переменными. К таким методам относятся, например, кластерный и факторный анализ.

    Методы оценки связи между переменными устанавливают влияние одной или нескольких независимых переменных на одну или несколько зависимых переменных. С точки зрения теории статистики существуют правила применения того или иного метода оценки связи между переменными в зависимости от типа шкалы их измерения (табл. 2.5).


    Таблица 2.5

    Методы оценки связи между переменными и типы шкал измерения переменных

    (Backhaus, Erichson, Ptinke, Weiber, 2000.S. Ш )


    Независимые переменные

    Метрическая шкала

    Номинальная шкала

    Зависимые переменные

    Метрическая шкала

    Регрессионный анализ

    Дисперсионный анализ

    Номинальная шкала

    Дискриминантный анализ

    Таблицы сопряженности

    Применение некоторых основных методов статистического анализа в SPSS будет более подробно рассмотрено в следующих подразделах.

    КОНТРОЛЬНЫЕ ВОПРОСЫ

    Что представляют собой таблицы, содержащиеся во вкладках редактора данных SPSS «Свойства переменных» ( Variable View ) и «Значения переменных» ( Data View )?

    Каким образом осуществляется процедура занесения в исходный файл данных SPSS меток переменных?

    Чем отличаются пропущенные значения, определяемые системой ( system - defined truss , ig values ) от пропущенных значений, задаваемых пользователем программы { user - defined missing values )!

    Какие три типа шкал измерения переменных используются в SPSS и каким образом задается тип шкалы измерения переменной при формировании исходного файла данных?

    Чем отличаются дихотомическая и категориальная кодировка данных?

    Почему при занесении в исходный файл данных SPSS ответов ка многовариантные (безальтернативные) вопросы необходимо использовать дихотомическую кодировку данных?

    С какой целью и в каких случаях применяется двойная запись данных при создании исходного файла SPSS ?

    По шкале какого типа измеряются следующие переменные: а) частота приобретения товара « A »

    реже 1-го раза в неделю;

    1 - 3 раза в неделю;

    чаще 3-х раз в неделю;

    Б) семейное положение

    Замужем/женат;

    Не замужем/ холост;

    Разведена/разведен;

    В) оценка уровня сервисного обслуживания

    Очень высокая;

    Высокая;

    Средняя;

    Очень низкая;

    Г) возраст (23 года, 24 года, 32 года, 57 лет)?

    1. Как отличаются друг от друга переменные, измеряемые по разным типам шкал, относительно возможности произведения арифметических операций и расчета статистических показателей?

    794. Орлов А.И. Теория измерений как часть методов анализа данных: размышления над переводом статьи П.Ф. Веллемана и Л. Уилкинсона // Социология: методология, методы, математическое моделирование. 2012. № 35. С. 155-174.
    А.И. Орлов

    (Москва)
    МЕСТО ТЕОРИИ ИЗМЕРЕНИЙ В МЕТОДАХ АНАЛИЗА ДАННЫХ 1


    Согласно современной парадигме прикладной статистики, теория измерений является неотъемлемой частью методов анализа данных. По мнению П.Ф. Веллемана и Л. Уилкинсона , применение теории измерений «при выборе или для рекомендации тех или иных методов статистического анализа неуместно и зачастую приводит к ошибкам». В статье приведены краткие сведения о шкалах измерения и применении теории измерений при выборе средних величин с соответствии с шкалами измерения данных, а затем скрупулезно анализируются аргументы П.Ф. Веллемана и Л. Уилкинсона. Итог дискуссии: «теория измерений важна для интерпретации статистического анализа» . Дискуссия позволила уточнить ряд вопросов применения прикладной статистики (анализа данных): выявлена роль решаемой задачи и применяемой модели данных для установления типов шкал измерения этих данных; разделены области применения разведочного анализа и доказательной статистики.
    Ключевые слова : теория измерений, анализ данных, прикладная статистика, шкалы измерения, допустимые преобразования, инвариантность выводов.
    Методы анализа данных (другими словами, прикладная статистика, статистические методы) необходимы социологу для обработки результатов массовых обследований, а также для подведения итогов экспертных опросов . Эта научная область бурно развивается. Согласно новой парадигме прикладной статистики, теория измерений является неотъемлемой частью современных методов анализа данных . В наших учебниках (, и др.) рассказано о теории измерений и ее применении при выборе адекватных методов анализа данных.

    Есть и другие мнения о целесообразности использования теории измерений при анализе социологических данных. Основная идея статьи П.Ф. Веллемана и Л. Уилкинсона выражена в ее названии. По их мнению, применение теории измерений «при выборе или для рекомендации тех или иных методов статистического анализа неуместно и зачастую приводит к ошибкам» .

    Прежде чем разбирать аргументы П.Ф. Веллемана и Л. Уилкинсона, целесообразно привести краткие сведения о предмете дискуссии, в частности, определить используемые нами термины и сформулировать основные положения в стиле отечественной вероятностно-статистической школы, основоположником которой является А.Н. Колмогоров, превративший теорию вероятностей и математическую статистику в раздел математики. При этом уточняем изложение в и описываем применение теории измерений в теории средних величин, позволившее создать стройную и окончательную систему средних.
    Основы теории измерений
    Теория измерений исходит из того, что арифметические действия с используемыми в практической работе числами не всегда имеют смысл. Например, зачем складывать или умножать номера телефонов? Далее, не всегда выполнены привычные арифметические соотношения. Например, сумма знаний двух двоечников не равна знаниям «хорошиста», т.е. для оценок знаний 2+2 не равно 4. Приведенные примеры показывают, что практика использования чисел для описания результатов наблюдений (измерений, испытаний, анализов, опытов) заслуживает методологического анализа.

    Основные шкалы измерения. Наиболее простой способ использования чисел - применение их для различения объектов. Например, телефонные номера нужны для того, чтобы отличать одного абонента от другого. При таком способе измерения используется только одно отношение между числами - равенство (два объекта описываются либо равными числами, либо различными). Соответствующую шкалу измерения называют шкалой наименований (при использовании термина на основе латыни - номинальной шкалой; иногда называют также классификационной шкалой). В этой шкале измерены штрих-коды товаров, номера паспортов, ИНН (индивидуальные номера налогоплательщиков) и многие иные величины, выраженные числами. С прикладной точки зрения шкала измерения - это способ приписывания чисел рассматриваемым объектам, соответствующий имеющимся между объектами отношениям.

    Отметим, что числа могут быть приписаны объектам разными способами. Переход от одного способа к другому наблюдаем при замене паспортов или телефонных номеров. Каковы свойства допустимых преобразований? Для шкалы наименований естественно потребовать только взаимной однозначности. Другими словами, применив к результатам измерений взаимно-однозначное преобразование, получаем новую шкалу, столь же хорошо описывающую систему исходных объектов, как и прежняя шкала.

    Шесть основных типов шкал измерения описаны в табл.1.
    Таблица 1. Основные шкалы измерения.


    Тип шкалы

    Определение шкалы

    Примеры

    Группа допустимых преобразований

    Шкалы качественных признаков

    Наименований

    Числа используют для различения объектов

    Номера телефонов, паспортов, ИНН, штрих-коды

    Все взаимно-однозначные преобразования

    Порядковая

    Числа используют для упорядочения объектов

    Оценки экспертов, баллы ветров, отметки в школе, полезность, номера домов

    Все строго возрастающие преобразования

    Шкалы количественных признаков

    (описываются началом отсчета и единицей измерения)



    Интервалов

    Начало отсчета и единица измерения произвольны

    Потенциальная энергия, положение точки, температура по шкалам Цельсия и Фаренгейта

    Все линейные преобразования φ(x ) = ax + b ,

    a и b произвольны, а >0


    Отношений

    Начало отсчета задано, единица измерения произвольна

    Масса, длина, мощность, напряжение, сопротивление, температура по Кельвину, цены

    Все подобные преобразования φ(x ) = ax ,

    а произвольно, а >0


    Разностей

    Начало отсчета произвольно, единица измерения задана

    Время

    Все преобразования сдвига φ(x ) = x + b ,

    b произвольно


    Абсолютная

    Начало отсчета и единица измерения заданы

    Число людей в данном помещении

    Только тождественное преобразование φ(x ) = x

    Кроме перечисленных в табл.1, используют и иные типы шкал . Отметим, что в табл.1 выражение «единица измерения произвольна» означает, что она может быть выбрана по соглашению специалистов, но не вытекает из каких-либо фундаментальных соотношений. При измерении времени естественная единица измерения задается периодами обращения небесных тел. Начало отсчета при измерении длины задается длиной отрезка, у которого начало и конец совпадают, и т.д.

    В настоящее время считается необходимым перед применением тех или иных алгоритмов анализа данных установить, в шкалах каких типов измерены рассматриваемые величины. При этом с течением времени тип шкалы измерения определенной величины может меняться. Например, температура сначала измерялась в порядковой шкале (теплее - холоднее). После изобретения термометров она стала измеряться в шкале интервалов (по шкалам Цельсия, Фаренгейта или Реомюра). Температура С по шкале Цельсия выражается через температуру F по шкале Фаренгейта с помощью линейного преобразования

    С открытием абсолютного нуля температур стал возможным переход к шкале отношений (шкала Кельвина).

    Требование инвариантности (адекватности) выводов. Выяснение типов используемых шкал необходимо для адекватного выбора методов анализа данных. Основополагающим требованием является независимость выводов от того, какой именно шкалой измерения воспользовался исследователь (среди всех шкал, переходящих друг в друга при допустимых преобразованиях). Например, если речь о длинах, то выводы не должны зависеть от того, измерены ли длины в метрах, аршинах, саженях, футах или дюймах.

    Другими словами, выводы должны быть инвариантны относительно группы допустимых преобразований шкалы измерения. Только тогда их можно назвать адекватными, т.е. избавленными от субъективизма исследователя, выбирающего определенную шкалу из множества шкал заданного типа, связанных допустимыми преобразованиями.

    Требование инвариантности выводов накладывает ограничения на множество возможных алгоритмов анализа данных. В качестве примера рассмотрим порядковую шкалу. Одни алгоритмы анализа данных позволяют получать адекватные выводы, другие - нет. Например, в задаче проверки однородности двух независимых выборок алгоритмы ранговой статистики (т.е. использующие только ранги результатов измерений) дают адекватные выводы, а статистики Крамера-Уэлча и Стьюдента - нет. Значит, для обработки данных, измеренных в порядковой шкале, критерии Смирнова и Вилкоксона можно использовать, а критерии Крамера-Уэлча и Стьюдента - нет.
    Выбор средних величин в соответствии со шкалами измерения
    Требование инвариантности является достаточно сильным. Из многих алгоритмов анализа статистических данных ему удовлетворяют лишь некоторые. Покажем это на примере сравнения средних величин.

    Средние по Коши. Среди всех методов анализа данных важное место занимают алгоритмы усреднения. Еще в 1970-х годах удалось полностью выяснить, какими видами средних можно пользоваться при анализе данных, измеренных в тех или иных шкалах.

    Пусть Х 1 , Х 2 ,…, Х n - выборка объема n . Наиболее общее понятие средней величины введено французским математиком первой половины ХIХ в. О. Коши. Средней величиной (по Коши) является любая функция f (X 1 , X 2 ,...,X n ) такая, что при всех возможных значениях аргументов значение этой функции не меньше, чем минимальное из чисел X 1 , X 2 ,...,X n , и не больше, чем максимальное из этих чисел. Средними по Коши являются среднее арифметическое, медиана, мода, среднее геометрическое, среднее гармоническое, среднее квадратическое.

    Средние величины используются обычно для того, чтобы заменить совокупность чисел (выборку) одним числом, а затем сравнивать совокупности с помощью средних. Пусть, например, Y 1 , Y 2 ,...,Y n - совокупность оценок экспертов (или респондентов), «выставленных» одному объекту экспертизы, Z 1 , Z 2 ,...,Z n - второму. Как сравнивать эти совокупности? Самый простой способ - по средним значениям.

    При допустимом преобразовании шкалы значение средней величины, очевидно, меняется. Но выводы о том, для какой совокупности среднее больше, а для какой - меньше, не должны меняться (в соответствии с требованием инвариантности выводов, принятом как основное требование в теории измерений). Сформулируем соответствующую математическую задачу поиска вида средних величин, результат сравнения которых устойчив относительно допустимых преобразований шкалы.

    Пусть f (X 1 , X 2 ,...,X n ) - среднее по Коши. Пусть среднее по первой совокупности меньше среднего по второй совокупности:

    f (Y 1 , Y 2 ,...,Y n ) (Z 1 , Z 2 ,...,Z n ).

    Тогда согласно теории измерений для устойчивости результата сравнения средних необходимо, чтобы для любого допустимого преобразования g (из группы допустимых преобразований в соответствующей шкале) было справедливо также неравенство

    f (g (Y 1), g (Y 2),...,g (Y n )) (Z 1), g (Z 2 ),...,g(Z n )),

    т.е. среднее преобразованных значений из первой совокупности было меньше среднего преобразованных значений для второй совокупности. Причем сформулированное условие должно быть выполнено для любых двух совокупностей Y 1 , Y 2 ,...,Y n и Z 1 , Z 2 ,...,Z n. И, напомним, для любого допустимого преобразования. Средние величины, удовлетворяющие сформулированному условию, назовем допустимыми (в соответствующей шкале). Согласно теории измерений только допустимыми средними величинами можно пользоваться при анализе мнений экспертов и иных данных, измеренных в рассматриваемой шкале.

    С помощью математической теории, развитой в монографии , удается описать вид допустимых средних величин в основных шкалах.

    Средние величины в порядковой шкале. Рассмотрим обработку, для определенности, мнений экспертов, измеренных в порядковой шкале. Справедливо следующее утверждение.

    Теорема 1. Из всех средних по Коши допустимыми средними в порядковой шкале являются только члены вариационного ряда (порядковые статистики).

    Теорема 1, впервые полученная в статье , справедлива при условии, что среднее f (X 1 , X 2 ,...,X n ) является непрерывной (по совокупности переменных) и симметрической функцией. Последнее означает, что при перестановке аргументов значение функции f (X 1 , X 2 ,...,X n ) не меняется. Это условие является вполне естественным, ибо среднюю величину находим для совокупности (множества) чисел, а не для последовательности . Множество не меняется в зависимости от того, в какой последовательности мы перечисляем его элементы.

    Согласно теореме 1 в качестве среднего для данных, измеренных в порядковой шкале, можно использовать, в частности, медиану (при нечетном объеме выборки). При четном же объеме следует применять один из двух центральных членов вариационного ряда - как их иногда называют, левую медиану или правую медиану. Моду тоже можно использовать - она всегда является членом вариационного ряда. Можно применять выборочные квартили, минимум и максимум, децили и т.п. Но никогда нельзя рассчитывать среднее арифметическое, среднее геометрическое и т.д.

    Средние по Колмогорову. Естественная система аксиом (требований к средним величинам) приводит к так называемым ассоциативным средним. Их общий вид нашел в 1930 г. А.Н. Колмогоров . Теперь их называют «средними по Колмогорову».

    Для чисел X 1 , X 2 ,...,X n средним по Колмогорову является

    G {(F (X 1) + F (X 2) +...+ F (X n ))/n },

    где F - строго монотонная функция (т.е. строго возрастающая или строго убывающая), G - функция, обратная к F . Среди средних по Колмогорову - много хорошо известных персонажей. Так, если F (x ) = x , то среднее по Колмогорову - это среднее арифметическое, если F (x ) = ln x , то среднее геометрическое, если F (x ) = 1/x , то среднее гармоническое, если F (x ) = x , то среднее квадратическое, и т.д. (в последних трех случаях усредняются положительные величины).

    Среднее по Колмогорову - частный случай среднего по Коши. С другой стороны, такие популярные средние, как медиана и мода, нельзя представить в виде средних по Колмогорову. В статье впервые доказаны следующие утверждения.

    Теорема 2. В шкале интервалов из всех средних по Колмогорову допустимым является только среднее арифметическое.

    Таким образом, среднее геометрическое или среднее квадратическое температур (в шкале Цельсия), потенциальных энергий или координат точек не имеют смысла. В качестве среднего надо применять среднее арифметическое. А также можно использовать медиану или моду.

    Теорема 3. В шкале отношений из всех средних по Колмогорову допустимыми являются только степенные средние с и среднее геометрическое.

    Есть ли средние по Колмогорову, которыми нельзя пользоваться в шкале отношений? Конечно, есть. Например, с F (x ) = e 2 x .

    Замечание 1. Среднее геометрическое является пределом степенных средних при .

    Замечание 2. Теоремы 1 и 2 справедливы при выполнении некоторых внутриматематических условий регулярности. Доказательства теорем 1-3 приведены в монографии . Перенос на случай взвешенных средних дан в статье .

    Аналогично средним величинам могут быть изучены и другие статистические характеристики - показатели разброса, связи, расстояния и др. (см., например, ). Нетрудно показать, например, что коэффициент корреляции не меняется при любом допустимом преобразовании в шкале интервалов, как и отношение дисперсий. Дисперсия не меняется в шкале разностей, коэффициент вариации - в шкале отношений, и т.д. В статье рассмотрены дальнейшие результаты о средних величинах.

    Согласно рассматриваемому подходу сначала надо установить, в каких шкалах измерены социологические данные, а затем использовать только инвариантные относительно этих шкал алгоритмы обработки данных.

    В статье теория измерений именуется «ограничения Стивенса», порядковая шкала названа ординальной, шкала отношений – относительной, нет понятия «группа допустимых преобразований», и т.п. Будем пользоваться устоявшимися в прикладной статистике терминами . В целом же позиция сторонников использования теории измерений при анализе данных описана в верно.

    На русском языке имеется достаточно много публикаций по теории измерений, написанных строго, квалифицированными авторами. Поскольку мы не ставим целью дать здесь обзор по теории измерений, отошлем читателей к работам и имеющимся там ссылкам на литературные источники.
    Первые размышления над переводом статьи П.Ф. Веллемана и Л. Уилкинсона
    Эта статья написана в виде обзора различных публикаций, изложение идет на словесном уровне, строгие определения, формулы, таблицы, примеры почти отсутствуют. Поэтому приходится додумывать за авторов, что они хотели сказать. Не всегда удается придать точный смысл их высказываниям.

    На с.173 выделено три направления критики:

    1. Требование инвариантности выводов относительно допустимых преобразований шкал измерения «представляется опасным для анализа данных».

    2. Подход на основе теории измерений «слишком строг, чтобы его можно было применять для реальных данных».

    3. Этот подход «часто ведет к понижению уровня данных через их преобразования в ранги и последующее ненужное обращение к непараметрическим методам».

    Начнем с разбора в общих терминах этих трех направлений критики.

    1. Опасным для получения обоснованных выводов является, наоборот, отказ от требования инвариантности. Разве можно опираться на выводы, которые меняются при допустимом преобразовании шкалы?

    Конечно, при первоначальном разведочном анализе данных можно их «прогнать» через весь арсенал имеющихся в программном продукте методов обработки – вдруг удастся что-нибудь интересное заметить? Полученные нестрогими методами «находки» необходимо затем проверить с помощью обоснованных процедур анализа данных .

    Практика зачастую вынуждает использовать соображения теории измерений. Так, при проведении нашим научным коллективом опросов летного состава авиакомпании «Волга-Днепр» выяснилось, что пилотам легче сказать, какое событие встречается чаще, а какое реже, чем оценить число осуществлений событий на 1000 полетов. Проводить оценивание в абсолютной шкале (оценивать вероятности событий) пилоты не берутся, в то время как задачи сравнения событий по частоте встречаемости или оценки их по встречаемости условными баллами (значениями качественных признаков) не вызывают сложностей. Таким образом, полученные при опросах пилотов оценки измерены в порядковых шкалах.

    2. При практической работе обычно вполне ясно, в каких шкалах измерены данные. Если попытаться навязать респондентам неправильную шкалу, их ответы будут произвольными, не отражающими истинных мнений, или же они могут попросту отказаться давать ответы, как это было в описанных выше опросах летного состава авиакомпании «Волга-Днепр».

    Можно признать, что в отдельных редких случаях определение типа шкалы измерения данных требует специальных исследований.

    3. Уже ко времени появления статьи П.Ф. Веллемана и Л. Уилкинсона (1993 г.) с помощью непараметрических методов можно было решать все те задачи анализа данных, для которых всё еще в отдельных работах используются параметрические методы. Согласно современной парадигме прикладной статистики , вместо параметрических методов, характерных для устаревшей парадигмы середины ХХ в., следует применять непараметрические методы.

    Согласно современным взглядам, параметрические методы – это методы, основанные на вероятностно-статистических моделях, в которых распределения случайных величин принадлежат тому или иному из параметрических семейств – семейству нормальных, логарифмически-нормальных, гамма-распределений или иных, входящих в четырехпараметрическое семейство К. Пирсона, введенное им в начале ХХ в. Непараметрические методы исходят из распределений произвольного вида. «Преобразование в ранги» не обязательно при применении непараметрических методов. Оно соответствует случаю, когда данные измерены в порядковой шкале.

    Как показали многочисленные исследования, почти все распределения реальных данных не принадлежат ни одному из известных параметрических семейств . Боязнь непараметрических методов не имеет рационального обоснования, она порождена предрассудками устаревшей парадигмы прикладной статистики середины ХХ в.

    От анализа общих возражений против применения теории измерений при анализе социологических данных перейдем к рассмотрению конкретных примеров, приведенных П.Ф. Веллеманом и Л. Уилкинсоном. Чтобы не раздувать объем настоящей статьи, не будем повторять формулировки примеров, предполагая, что читатели имеют перед собой перевод их исходной статьи .

    В критике Лорда выделим несколько составляющих. Во-первых, выбор типа шкалы может быть связан с решаемой задачей. Так, номера договоров предприятия служат прежде всего для того, чтобы различать эти договора (и связанные с ними действия), т.е. естественно принять, что они измерены в шкале наименований. Однако эти номера возрастают с течением времени (в соответствии с датами заключения договоров), поэтому в некоторых задачах принятия управленческих решений естественно считать, что они измерены в порядковой шкале. Во-вторых, при обработке порядковых данных с помощью алгоритмов, не являющимися инвариантными в порядковой шкале, может создаться впечатление, что получены обоснованные выводы. Лорд рассказывает о применении неравенства Чебышева (можно было использовать критерий Крамера-Уэлча ). Однако при применении той же процедуры анализа к данным, подвергнутым некоторому допустимому преобразованию в порядковой шкале, выводы будут прямо противоположными. Для обнаружения различия между двумя независимыми выборками следовало применить непараметрические критерии однородности, например, критерий Вилкоксона .

    Бейкер, Хардик и Петринович, Боргатта и Боршштейн не хотят применять непараметрические методы, объяснений нет. Веллеман и Уилкинсон напрасно критикуют их за нежелание «связываться с проблемой робастности» . Робастные методы, т.е. устойчивые к малым отклонениям функций распределения данных, не позволяют справиться с произвольным допустимыми преобразованиями. Если же от робастности перейти к более общей системе понятий – к общей схеме устойчивости, то оказывается, что устойчивые к допустимым преобразованиям шкал методы анализа данных – это ранговые методы как частный случай непараметрических .

    Гутман предлагает использовать «функцию потерь, выбранную для проверки качества модели» . Действительно, если задана функция потерь, то нет необходимости привлекать теорию измерений. Проблема в том, чтобы выбрать эту функцию, причем обоснованно. Ни с одним таким практиком за более чем 40 лет консультирования в области анализа данных мне встретиться не довелось. Тот, кто сможет выбрать функцию потерь, уже не практик, а квалифицированный специалист в области математической статистики.

    По мнению Тьюки, «какое знание не основано на некоторой приблизительности» . Действительно, при первоначальном разведочном анализе одного взгляда на данные специалисту бывает достаточно для формулировки вывода. Однако и практики, и теоретики настаивают на том, чтобы интуитивные выводы были обоснованы строгими рассуждениями.
    Дискуссия о статистиках и шкальных типах
    Названный так раздел начинается словами: «Статистики отвергли запрет на методы, основанный на ограничениях, связанных с допустимыми преобразованиями». Это совершенно неверно. Статистики приняли этот запрет (см. обсуждения в ). Особенно ясно это сейчас, через 20 лет после написания статьи . В настоящее время сомнения остаются у некоторых из тех, кто не является профессионалом в области анализа данных, к тому же склонен к принятию простых решений и не хочет утруждать себя изучением теории измерений и непараметрической статистики. Такой настрой практиков вполне естественен и разумен, но не плодотворен. Современная прикладная статистика не является простой, для ее усвоения нужно приложить усилия и затратить время.

    Приходится констатировать, что в статью включено большое количество категоричных утверждений, не подтвержденных аргументами и противоречащих практике анализа данных. На с.176 сказано: «Ключевой аргумент против использования предписания статистик на основе шкального типа гласит: это не работает!». Еще как работает – и на практике, и при развитии теории (в начальных разделах настоящей статьи показано, что теория измерений позволила придать теории средних законченный вид). На с.177 говорится, что «опыт показывает, что применение запрещенных статистик к данным приводит к научно значимым результатам, важным при принятии решений и ценным для дальнейших исследований». Примеров нет. Видимо, потому, что это утверждение неверно.

    В часто используются термины без определений. Отечественного читателя может поразить заявление о «фундаментальной разнице между математикой и наукой» (с.176). В нашей стране согласно традиции и нормативным документам Минобразования и ВАК математика – одна из наук. Мы считаем, что статистические методы и анализ данных – это одно и то же. Именно поэтому наша крайняя книга называется «Статистические методы анализа данных» . Конечно, можно определить термины так, что математика не будет наукой, а анализ данных станет отличаться от математической статистики. Дискуссия о терминах – увлекательное занятие. Только в одной брошюре приведено около 200 определений термина «статистика». Однако ясно, что использование терминов без определений, как это сделано в , может только запутать читателя.
    Различные виды данных
    Нельзя не согласиться с Веллеманом и Уилкинсоном в том, что данные – это не всегда числа . Элементами выборок могут быть вектора, функции, различные виды объектов нечисловой природы – бинарные отношения, множества, нечеткие множества, интервалы и др. . Тем более это касается результатов расчетов, таких, как доли или набор точек на плоскости, полученных в результате многомерного шкалирования. Обратите внимание: при рассказе о применении теории измерений при анализе данных в начале этой статьи шла речь об инвариантности выводов, сделанных на основе обработки наборов чисел. Следовательно, теория измерений используется не во всех разделах прикладной статистики, а лишь при статистическом анализе числовых величин . Это замечание понадобится при дальнейшем разборе статьи .

    Необходимо всегда различать разведочный статистический анализ, нацеленный на «интуитивное проникновение в закономерности массива данных» , и доказательную статистику, основанную на строгих рассуждениях. Именно к разведочному анализу относятся методы преобразования данных и многомерного шкалирования . При разведочном анализе соблюдать требования теории измерений не обязательно, а в доказательной статистике – наоборот.

    В разделе «Хороший анализ данных не основан на допущениях о типе данных» Веллеман и Уилкинсон справедливо обращают внимание на важность правильного выбора статистической модели. В следующем разделе «Стивенсовские категории не описывают фиксированных свойств данных» речь фактически идет о том же: в ряде ситуаций «шкальный тип зависит от интерпретации данных или от наличия дополнительной информации» . Это утверждение совершенно верно, набор чисел сам по себе не дает возможности обосновать тип шкалы. Результат измерения равен 2911397 – какая шкала? Если это число из бухгалтерского отчета, то шкала отношений (переход от одной валюты к другой – подобное преобразование). Если же это число – из телефонного справочника, то номер телефона измерен в шкале наименований. На эту тему мы говорили ранее в связи с разбором работы Лорда . Итак, весьма важен выбор статистической модели, им определяются шкалы измерения данных.

    В разделе «Категории Стивенса недостаточны для описания шкал данных» рассматриваются «многомерные шкалы». Что это такое – неясно, так как определений нет. Однако квазипрактический пример, заданный табл.1, достаточно понятен. Поскольку я пять лет проработал в медицинских учреждениях (в «кремлевской больнице» и в НИИ профессиональных заболеваний и гигиены труда АМН СССР), то отмечу, что число имеющихся у пациента симптомов нельзя рассматривать как показатель тяжести заболевания, поскольку подобное рассмотрение предполагает, что все симптомы равноценны по вкладу в тяжесть заболевания. Такого в медицине не бывает.

    О чем идет речь в абзаце, посвященном работе Андерсона , остается неясным, поскольку определений используемых понятий нет.
    Робастность, шкалы и анализ данных
    В разделе «Статистические процедуры не могут классифицироваться по критериям Стивенса» Веллеман и Уилкинсон обсуждают обратную задачу (в терминологии ), в которой для заданной процедуры анализа данных требуется установить, в каких шкалах эта процедура дает инвариантные выводы. Действительно, нами доказано, что вывод о сравнении рассчитанных по двум выборкам значений линейной функции от порядковых статистик, заданной формулой (5) на с.185 , инвариантен в порядковой шкале, если только один весовой коэффициент отличен от 0 (см. и теорему 1 в начале статьи), и в шкале интервалов (и в шкалах с более узкими группами преобразований – отношений, разностей, абсолютной), если по крайней мере два весовых коэффициента отличны от 0 (см. ). Остальной текст этого раздела статьи не поддается интерпретации в строгих терминах. Отметим только, что рассматривается иная задача, чем раньше, - увязка процедур расчетов со шкалами измерения, а не установление типа шкалы измерения исходных данных.

    В разделе «Шкальные типы – не точные категории» в очередной раз бездоказательно утверждается, что «реальные данные не удовлетворяют требованиям шкальных типов». Вместе с тем правильно отмечено, что при сомнениях «следует осуществить понижение уровня» шкалы, например, с интервальной до порядковой. В задаче, рассмотренной Тьюки в 1961 г., была бы полезна статистика интервальных данных, развиваемая с начала 1980-х годов .

    В разделе «Шкалы и анализ данных» рассуждения построены на смешении разведочного статистического анализа, при котором можно не обращать внимание на шкалы, в которых измерены данные, и анализа данных на стадии получения строгих выводов, немыслимых без обращения к теории измерений. Странно, что Веллеман и Уилкинсон считают «хорошим» только разведочный анализ. Фраза: «Хороший анализ данных редко следует формальной парадигме проверки гипотезы» демонстрирует их нигилизм по отношению к математической статистике, который никак нельзя оправдать.

    В разделе «Осмысленность» термин, давший название разделу, так и остался без определения. Как справедливо отмечают Веллеман и Уилкинсон, согласно теории измерений осмысленность – это то, что сохраняется при допустимых преобразованиях. Такое определение им не нравится, но дать другое они не могут, занимаясь общими рассуждениями о праве на ошибку. Странно читать такое: «Если бы наука была ограничена доказуемо осмысленными суждениями, она не смогла бы развиваться». Математика же успешно развивается!

    Раздел «Роль типов данных» начинается неожиданно – с признания важности теории измерений: «Были бы ошибкой полагать, что типы данных не имеют значения… Понятие типа шкалы важно, а терминология Стивенса (т.е. теории измерений - А.О.) зачастую бывает удобна». Дальнейшие рассуждения снова посвящены констатации того, что, в нашей терминологии, тип шкалы определяется не самими данными, а моделью, соответствующей решаемой задаче (см. выше интерпретацию числа 2911397 как результата измерений в шкале отношений или в порядковой шкале в зависимости от постановки задачи). Вторая идея, которая также уже встречалась, - упор на разведочный анализ и умаление роли доказательной статистики.
    Заключение
    Раздел «Заключение» статьи написан взвешенно, высказанные в нем положения в целом справедливы. Как уже говорилось, нельзя считать, «что тип шкалы как бы самоочевиден и не зависит от того, какой вопрос ставит исследователь перед своими данными». За двадцать лет после написания статьи стало ясно, что после постановки вопроса исследователь должен описать модель анализа данных, обычно вероятностно-статистическую, включающую выбор типа шкал измерения данных, а затем в рамках этой модели разработать метод решения задачи или выбрать его из уже имеющихся .

    Совершенно верно, что «статистическое программное обеспечение, способствующее любому анализу для любых данных, допускает и безответственный анализ». Об этом предупреждал В.В. Налимов более 40 лет назад . Он имел в виду прежде всего склонность к проведению расчетов без знакомства с сутью применяемых методов.

    Анализ статьи закончен.

    Подводя итоги настоящей статьи, необходимо констатировать пользу от сопоставления подходов теории измерений и критических замечаний по ее поводу, собранных в статье Веллемана и Уилкинсона . Дискуссия позволила уточнить ряд вопросов применения прикладной статистики (анализа данных). Прежде всего, выявлена роль решаемой задачи и применяемой модели данных для установления типов шкал измерения этих данных, разделены области применения разведочного анализа и доказательной статистики. Подтвердилась справедливость пословицы: «В споре рождается истина».


    ЛИТЕРАТУРА
    1. Орлов А.И. Статистические методы в российской социологии (тридцать лет спустя) // Социология: методология, методы, математические модели. 2005. № 20. С.32-53.

    2. Орлов А.И. Новая парадигма прикладной статистики // Заводская лаборатория. 2012. Том 78. №1, часть I. С.87-93.

    3. Орлов А.И. Прикладная статистика. Учебник. - М.: Экзамен, 2006. - 672 с.

    4. Орлов А.И. Организационно-экономическое моделирование: учебник: в 3 ч. Часть 1: Нечисловая статистика. – М.: Изд-во МГТУ им. Н.Э. Баумана. – 2009. – 541 с.

    5. Веллеман П.Ф., Уилкинсон Л. Типология номинальных, ординальных, интервальных и относительных шкал вводит в заблуждение // Социология: методология, методы, математическое моделирование. 2011. № 33. С.166 – 193.

    6. Толстова Ю.Н. Измерения в социологии. - М.: Инфра-М, 1998. - 352 с.

    7. Орлов А.И. Устойчивость в социально-экономических моделях. - М.: Наука, 1979. - 296 с.

    8. Орлов А.И. Допустимые средние в некоторых задачах экспертных оценок и агрегирования показателей качества. // Многомерный статистический анализ в социально-экономических исследованиях. - М.: Наука, 1974. С. 388-393.

    9. Колмогоров А.Н. Об определении среднего // Избр. труды. Математика и механика. М.: Наука, 1985. С. 136–138.

    10. Орлов А.И. Допустимые преобразования в задаче сравнения средних. Пси-постоянные статистики. // Алгоритмы многомерного статистического анализа и их применения. - М.: Изд-во ЦЭМИ АН СССР, 1975. С.121-127.

    11. Орлов А.И. Связь между средними величинами и допустимыми преобразованиями шкалы // Математические заметки. 1981. Т. 30. №4. С. 561–568.

    12. Барский Б.В., Соколов М.В. Средние величины, инвариантные относительно допустимых преобразований шкалы измерения // Заводская лаборатория. 2006. Том 72. №1. С.59-66.

    13. Орлов А.И. Организационно-экономическое моделирование: учебник: в 3 ч. Ч.3. Статистические методы анализа данных. - М.: Изд-во МГТУ им. Н.Э. Баумана, 2012. - 624 с.

    14. Никитина Е.П., Фрейдлина В.Д., Ярхо А.В. Коллекция определений термина «статистика». – М.: МГУ, 1972. – 46 с.

    15. Налимов В.В. О преподавании математики экспериментаторам // О преподавании математической статистики экспериментаторам. Препринт Межфакультетской лаборатории статистических методов №17. – М.: Изд-во МГУ им. М.В. Ломоносова, 1971. – С.5-39.

    1Александр Иванович Орлов, профессор, доктор экономических наук, доктор технических наук, кандидат физико-математических наук, директор Института высоких статистических технологий и эконометрики МГТУ им. Н.Э. Баумана, профессор МФТИ, советник президента группы авиакомпаний «Волга-Днепр», президент Российской ассоциации статистических методов. E-mail: prof - orlov @ mail . ru .

    Работа выполнена при финансовой поддержке Министерства образования и науки РФ в рамках Постановления Правительства РФ № 218.

    Одна из проблем, наиболее часто встречающихся при планировании опроса и подготовке инструментария для него, заключается в том, каким образом следует приписывать единое репрезентативное значение или оценку (score) некоторому сложному отношению или поведению. В качестве примера рассмотрим, как можно было бы измерить предубежденность населения против студентов колледжей. Такая предубежденность может проявляться в самых разных формах в зависимости от того, на каких признаках студентов сосредоточено внимание конкретного индивида (респондента). Так, некоторые люди судят о студентах по одежде, другие – по манерам, третьи – по поведению в повседневной жизни, по социально-экономическому статусу и даже по уровню личной гигиены. У иных стереотипное мнение могло сложиться на основании всего одной-двух встреч (приятных либо нет) с какими-то конкретными студентами; а кто-то, возможно, вообще едва ли способен отличить студента от других людей. Элементы суждения могут сильно варьировать по содержанию, направленности, степени оценки, но каждый и них представляет собой – по крайней мере потенциально – компонент более широкого понятия «предубежденность».

    Если необходимо учесть все эти моменты, то нам надо подобрать такой инструмент, который сумеет выявлять и измерять как можно больше подобных составных элементов понятий и одновременно будет достаточно точен, чтобы позволять осмысленным образом определять степень проявления общего понятия в единичном наблюдении. Иными словами, необходимо такое средство, которое бы улавливало и отображало понятие, подобное понятию «предубежденность», во всех деталях, а кроме того, показывало бы нам, сколько (какая доля) этого понятия содержится в том или ином случае или ответе респондента. Одно из таких средств называется шкалированием.

    Шкалирование – это процедура объединения ряда относительно узких показателей (например, это пункты опроса, касающиеся отдельных отмеченных респондентами признаков студентов) в единую суммарную меру, которая принимается за отображение более широкого основного понятия (в нашем случае – предубежденности), частью которого является каждый отдельный признак. Так, можно было бы измерить отношение респондента к различным видам поведения студентов (например, к тому, сколько они употребляют алкогольных напитков, или к тому, сколь шумны их вечеринки) или к манерам студентов (к тому, насколько они чванливы, самонадеянны или невнимательны к другим людям), но ни один из этих признаков в отдельности мы не могли бы принять за полноценное отображение столь широкого понятия, как предубежденность. Нам скорее следовало бы каким-то образом свести все эти меры воедино, чтобы иметь возможность делать выводы о более общей точке зрения, которую каждая из них в чем-то дополняет и отображает. Более того, нам нужно решить эту задачу так, чтобы можно было сравнивать количество предубежденности (или любого другого измеряемого нами понятия), содержащееся в ответе одного респондента, с количеством ее, содержащимся в ответе другого респондента, и в конечном итоге судить о том, кто из респондентов предубежден более.

    Унифицирующая мера, отображающая определенное основное понятие, называется шкалой. Частное значение степени проявления в каждом данном случае основного понятия называется шкальной оценкой. Шкалирование, или построение шкалы, – это процедура, с помощью которой исследователь формирует шкалу и приписывает отдельным случаям оценки на этой шкале.

    Шкалирование - метод моделирования реальных процессов при помощи шкал.

    Шкалирование - метод присвоения числовых значений отдельным атрибутам некоторой системы.

    Шкалирование позволяет разбить описание сложного процесса на описание параметров по отдельным шкалам. В результате в применении к экономическим задачам, например, можно получить представление об области интересов потребителя, исследовать важность каждой шкалы для него.

    Шкала (лат. scala - лестница) - сопоставление результатов измерения какой-либо величины и точек числовой прямой.

    Шкала — это множество обозначений, отношения между которыми отражают отношения между объектами эмпирической системы. Шкалой можно назвать результаты измерения, полученные в исследовании, а также инструмент измерения (т.е. систему вопрсов), опросник, тест).

    1.2 Виды шкал и типы шкалирования

    Шкалы разделяются по типу, в соответствии с тем, какие отношения они отражают. Кроме того, каждой шкале соответствуют допустимые для данной шкалы математические преобразования. Типы шкал имеют иерархическую упорядоченность по сложности. В психометрии, эконометрик, прикладной статистике принята следующая классификация шкал, предложенная в 1946 году Стэнли Смитом Стивенсом:

    – шкала наименований (номинальная) – простейшая из шкал. Числа используются для различения объектов. Отображает те отношения, поcредством которых объекты группируются в отдельные непересекающиеся классы. Номер класса не отражает его количественного содержания. Примером шкалы такого рода может служить классификация испытуемых на мужчин и женщин, нумерация игроков спортивных команд и др. Номера телефонов, паспортов, штрих-коды товаров, индивидуальные номера налогоплательщиков измерены в шкале наименований;

    – порядковая шкала – отображение отношений порядка. Субъекты в данной шкале ранжированы. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса;

    – интервальная шкала – помимо отношений указанных для шкал наименования и порядка, отображает отношение расстояния (разности) между объектами. Разности во всех точках данной шкалы равны. Для неё допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

    – шкала отношений – в отличие от шкалы интервалов может отражать то, во сколько один показатель больше другого. Шкала отношений имеет нулевую точку, которая характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки — сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения — градус Цельсия).

    Шкала разностей – начало отсчёта произвольно, единица измерения задана. Допустимые преобразования — сдвиги. Пример: измерение времени.

    Абсолютная шкала – в ней присутствует дополнительный признак — естественное и однозначное присутствие единицы измерения. Эта шкала имеет единственную нулевую точку. Пример: число людей в аудитории.

    С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.


    Рис. 1. Классификация методов шкалирования

    Используемые в социологических исследованиях методы шкалирования условно можно разделить на сравнительные и несравнительные.

    Сравнительные шкалы (comparative scales) предполагают прямое сравнение рассматриваемых объектов. Например, респондентов спрашивают, предпочитают они Соке или Pepsi. Данные сравнительных шкал считаются относительными и имеют свойства только порядковых и ранговых величин. Поэтому сравнительное шкалирование также называют неметрическим. Как показано на рис. 1, сравнительные шкалы включают попарное сравнение, порядковое ранжирование, шкалы постоянной суммы, Q-copтировку и другие операции.

    Сравнительные шкалы (comparative scales) – один из двух методов шкалирования, заключающийся в прямом сравнении рассматриваемых объектов.

    Основное преимущество сравнительного шкалирования заключается в возможности распознавания незначительных различий между рассматриваемыми объектами. При сравнении двух объектов респондентам приходится выбирать между ними. Кроме того, респонденты выполняют задание исходя из заданных баллов предпочтения. Благодаря этому сравнительные шкалы легко воспринимать и применять. Другое преимущество этих шкал - сравнительно меньшее количество используемых теоретических допущений, а также устранение влияния гало-эффекта, или эффекта переноса, когда из-за сильного предпочтения одного товара искажается сравнительная оценка других. Основной недостаток сравнительных шкал - их порядковая природа и ограничение анализа рамками определенного количества рассматриваемых объектов. Например, для сравнения RC Cola с Соке и Pepsi следует проводить новое исследование. Эти недостатки в значительной степени устраняются при использовании несравнительных методов шкалирования.

    При использовании несравнительных шкал (noncomparative scales), также называемых монадическими или метрическими, каждый объект исходной рассматриваемой совокупности оценивается независимо от других. Полученные данные считаются измеренными в интервальной или относительной шкале.

    Несравнительные шкалы (noncomparative scales) – один из двух методов шкалирования, заключающийся в самостоятельной оценке каждого объекта.

    Например, респондентов могут попросить оценить Соке по шкале предпочтений от 1 до 6 (1 - абсолютно не нравится, 6 - очень нравится). Таким же образом оцениваются Pepsi и RC Cola. Из рис. 1 видно, что несравнительные рейтинговые шкалы могут быть непрерывными или детализированными. Детализированные рейтинговые шкалы, в свою очередь, разделяются на шкалы: Лайкерта (Likert), семантического дифференциала и Стэпела (Stapel). В маркетинговых исследованиях чаще всего используется несравнительное шкалирование. В этом разделе рассматриваются сравнительные методики шкалирования.

    1.3 Основные проблемы при построении шкал

    Из вышеизложенного шкалирование может показаться достаточно простой, прямолинейной процедурой, когда в задачу исследователя входит просто идентифицировать ряд компонентов основного понятия, установить, каким показателем можно измерить каждый из них, затем объединить эти показатели в суммарную оценку «…с помощью произнесения нескольких волшебных слов или статистических заклинаний, и – раз-два! – дело сделано». К сожалению, эта видимая простота обманчива, потому что при отборе и интерпретации компонентов шкалы нам может встретиться целый ряд подводных камней, требующих особой внимательности. Во-первых, это проблемы, связанные с понятиями валидности (обоснованности) и надежности.

    Валидность – это свойство, определяемое ответом на вопрос: «Действительно ли мы измеряем именно то, что хотим измерить?». В теперешнем нашем контексте этот вопрос может быть несколько трансформирован следующим образом: «Есть ли основания полагать, что каждый из отдельных компонентов шкалы (каждый из конкретных вопросов) действительно напрямую связан с основным понятием и что все компоненты в совокупности полностью охватывают это понятие?». Иначе говоря, необходимо должны задаться вопросом: «А есть ли реальный смысл в том, чтобы объединять между собой ряд частных показателей, и – коли уж мы это сделали – есть ли смысл навешивать на этот ряд показателей избранный нами ярлык основного понятия?». Так, обращаясь снова к примеру со студентами, необходимо узнать, во-первых, действительно ли мнение человека о поведении студентов непосредственно связано с его мнением о студенческом стиле одежды или о манерах студентов, и во-вторых, действительно ли все эти мнения в совокупности отражают степень предубежденности данного лица против студентов.

    Что касается надежности, то она определяется ответом на вопрос: «Вне зависимости от того, что конкретно мы измеряем, последовательно ли мы это делаем?». Применительно к шкалированию этот вопрос трансформируется в заботу о том, чтобы различные показатели, являющиеся компонентами шкалы, были связаны друг с другом последовательным и осмысленным образом. На деле нас интересует здесь не то, позволяет ли данный набор вопросов или показателей отличить яблоки от апельсинов, а скорее то, позволяет ли этот набор последовательно сортировать уже идентифицированные нами яблоки по размеру, цвету и т. п. в соответствии с некоторым стандартом. Если да, то объединение различных мер будет говорить о яблоках больше, чем любая отдельная мера. Но если наши стандарты (цвета, размера и т. п.) непоследовательны или двусмысленны, то основанные на них наблюдения могут оказаться ложными. 1

    Возможно, другой пример поможет сделать эти положения более понятными. Рассмотрим некую шкалу, предназначенную для того, чтобы каждый респондент выразил свое согласие или несогласие со следующими утверждениями:

    1. Кубинцы дурны, и им нельзя верить

    2. Французы дурны, и им нельзя верить

    3. Японцы дурны, и им нельзя верить

    4. Китайцы дурны, и им нельзя верить.

    Давайте представим, что перед нами шкала для измерения ксенофобии, то есть страха и недоверия к иностранцам. Предположительно, чем с большим количеством утверждений согласится респондент, тем выше уровень ксенофобии, который мы можем ему приписать. Но будет ли дело обстоять именно так? Человек, полагающий, что только кубинцы дурны и им нельзя верить, утверждает это более в силу антикоммунизма, чем ксенофобии. В свою очередь человек, полагающий, что только японцы и китайцы дурны и им нельзя верить, утверждает это более в силу расизма, чем ксенофобии. И даже респондент, считающий, что все четыре группы дурны и им нельзя верить, как выясняется при ближайшем рассмотрении, страдает не ксенофобией, а скорее чувством, что все люди, или все правительства (даже той страны, где он живет) дурны и им нельзя верить. И следовательно, поскольку мы не можем с уверенностью утверждать, что эта шкала измеряет ксенофобию по существу, то эта шкала несостоятельна. И можем ли мы вообще доверять ей? Составлена ли она продуманно даже для измерения уровня ксенофобии? Страх и недоверие к китайцам, например, возможно, являются индикатором по меньшей мере двух совершенно различных особенностей, одна из которых идеологическая, вторая же имеет своей причиной расизм, и два респондента могут дать одинаковый ответ по совершенно разным причинам. И будет ли одинаковым чувство ксенофобии у антикоммуниста и расиста? Скорее всего – нет. Таким образом, механическое соединение этих конкретных пунктов с целью их соизмерения в лучшем случае будет лишь тщетным упражнением, а в худшем – станет источником ошибочных умозаключений. 1

    Проблемы подобного рода преодолеть не всегда просто, и ввиду этого при шкалировании нужно действовать очень внимательно, заранее все просчитывая. Тем не менее возможность представления сложного отношения или поведения в виде отдельного числа или оценки, являющаяся неоспоримым преимуществом шкалирования, служит стимулом к использованию этой методики во множестве самых разнообразных случаев.

    2. РОЛЬ ШКАЛ В ПРОЦЕССЕ АНАЛИЗА ДАННЫХ

    Шкала измерительная представляет собой алгоритм присвоения объекту числа, отражающего наличие или степень выраженности у него некоторого свойства. Различают четыре основных типа измерительных щкалы: шкала наименований, шкала порядка, шкала интервалов и шкала отношений. Шкалы наименований и порядка позволяют отнести объект к одному из нескольких непересекающихся классов и называются «качественными». Шкалы интервалов и отношений измеряют «количество» или степень выраженности у объекта некоторого свойства и называются «количественными». Шкала наименований (номинальная шкала) позволяет отнести объект к одному из нескольких классов, между которыми не установлено отношение порядка, т.е. классов, по отношению к которым не применяются сравнения типа «больше — меньше», «лучше — хуже» и т.п. По номинальным шкалам измеряются такие социологические показатели как пол, национальность или раса, цвет глаз, темперамент и т.п. При разработке номинальной шкалы составляется полный список классов, который нумеруется в произвольном порядке. При этом числа, представляющие номера классов, играют роль символов или «меток», к ним не могут применяться никакие арифметические операции. Другими словами, на номинальной шкале определено только отношение тождества: объекты, отнесенные к одному классу, считаются тождественными, отнесенные к разным классам — не тождественными. Частным случаем номинальной шкалы является дихотомическая шкала, фиксирующая наличие или отсутствие у объекта некоторого свойства. Наличие качества принято обозначать числом «1», его отсутствие — числом «0». Шкала порядка предназначена для отнесения объекта к одному из непересекающихся классов, упорядоченных по некоторому критерию. На шкале порядка, кроме отношения тождества, определено отношение порядка («больше — меньше»). Таким образом, про объекты, отнесенные к разным классам, можно сказать, что у одного из них измеряемое свойство выражено сильнее, чем у другого, но при этом нельзя определить, насколько сильнее. Типичными примерами шкалы порядка являются образование, тип поселения, социальное положение, воинские звания и т.п. При построении шкалы порядка классы нумеруются в порядке возрастания или убывания соответствующего признака. Арифметические операции над номерами классов не производятся. Частным случаем шкалы порядка является ранговая шкала, применяемая в тех случаях, когда некоторый признак не может быть измерен, но объекты могут быть упорядочены по соответствующему критерию, либо когда порядок объектов более важен, чем точный результат измерения, — например, места, занятые на спортивных состязаниях. Ранговые шкалы используются также при изучении предпочтений, ценностных ориентаций, мотивов, установок и т.п. Респонденту в этом случае предлагается упорядочить предложенный список объектов, понятий или суждений по определенному критерию. Другим частным случаем шкалы порядка является оценочная шкала, с помощью которой свойства объекта или отношение респондента к чему-либо оценивается исходя из определенного количества баллов. Например, академическая успеваемость оценивается по 5-балльной шкале. Оценочные шкалы часто рассматриваются как исключение из шкал порядка, так как предполагается, что между баллами на шкале существует примерно одинаковое расстояние. Например, предполагается, что «отличник» знает предмет настолько же лучше, чем «хорошист», насколько «хорошист» знает его лучше по сравнению с «троечником». Это свойство позволяет во многих случаях рассматривать оценочные шкалы как квазиинтервальные и использовать их соответствующим образом, например, вычислять средний балл по аттестату зрелости или определять среднюю успеваемость в классе. Шкалы интервалов и отношений являются Ш.И. в прямом смысле этого слова. Для них характерно наличие единицы измерения, позволяющей определить, насколько один объект больше или меньше, чем другой, по изучаемому критерию. Отличие между этими двумя типами шкал состоит в том, что шкала отношений обладает «объективным» нулем, не зависящим от произвола наблюдателя, который, как правило, соответствует полному отсутствию измеряемого качества у объекта. На шкале интервалов нуль устанавливается произвольно либо в соответствии с некоторыми традициями и договоренностью. Так, возраст измеряется по шкале отношений, а летоисчисление — по шкале интервалов, хотя в обеих шкалах используется одинаковая единица измерения — год. На шкале интервалов, кроме отношений тождества и порядка, определено отношение разности: для любой пары объектов можно определить, на сколько (единиц измерения) один объект больше или меньше другого. Шкалы интервалов широко используются в психологических тестах и психометрии, методиках семантического дифференциала, других методах вторичных измерений. По шкалам отношений измеряются такие показатели, как рост, возраст, доходы, стаж работы, количество выкуриваемых сигарет и т.п. Для таких переменных определены не только отношения тождества, порядка и разности, но и отношение отношений, позволяющее определять, во сколько раз один объект больше или меньше другого.

    Измерение — отображение эмпирической системы в числовую систему, сохраняющую порядок отношений между объектами. Классическая концепция измерения различает два способа приписывания объектам значений переменных. Первый способ называется оцениванием. Отображение свойства объекта на шкалу осуществляется здесь в условных единицах. Например, можно с той или иной степенью точности определить место человека на шкале «консерватизма». Никакой единицы консерватизма в распоряжении исследователя не имеется, градации могут меняться произвольно.

    Собственно измерение требует определения единицы — эталона шкалы. В этом случае измерению поддаются лишь пространственные и временные признаки, а также численность — аддитивные величины. Однако в социальных и поведенческих науках получил признание более широкий взгляд на измерение как на приписывание объектам значений в соответствии с заданной системой отношений на различных уровнях.

    Переменная — не то же самое, что реальные признак или свойство. Это своего рода линейка — совокупность норм и операций, которые необходимы и достаточны для квалификации события, свойства, отношения, словом, всего того, что принято понимать под фактами. Для линейки не очень важно, нанесены ли ее деления на деревянную, пластмассовую либо металлическую пластинку. Гораздо важнее градуировка шкалы, а также умение пользователя правильно производить замеры. Аналогичным образом обстоит дело и при измерении поведения, только «линейка» в данном случае имеет вид вопросника (или бланка наблюдения), а «прикладывание» их к объекту есть не что иное, как операциональное определение.

    Как измерительный инструмент переменная конструируется исследователем путем установления континуума значений (градаций). Minimum minimorum континуума, как мы уже знаем, — дихотомия: «да» и «нет», плюс и минус, утверждение и отрицание. Фактически же мы почти всегда имеем дело с трихотомиями, поскольку в составе любой переменной положена градация «нет ответа» (или «нет данных»).

    Таким образом, переменная содержит три компонента: 1) некоторую не всегда отчетливо сформулированную концепцию измеряемого признака, например, «электоральные предпочтения», «стабильность семьи», «образование» и т. п.; 2) шкалу — совокупность значений, задающих критерии классификации объектов; 3) операциональное определение — совокупность инструкций, регламентирующих процесс идентификации объекта по установленной шкале значений.

    Элементарный уровень измерения — номинальный. Этому уровню соответствует шкала наименований, которая состоит из значений признаков, не упорядоченных по степени возрастания или убывания. Типичные примеры шкалы наименований: национальность, профессия, политические убеждения. Значения шкалы наименований конструируются в соответствии с логическими правилами классификации. Первое из них — правило непротиворечия. Оно гласит: «Объект может быть отнесен к одному и только одному классу, предусмотренному значением переменной». Иными словами, исследователь обязан называть вещи своими именами и избегать диалектики, при которой объект одновременно оказывается и тем, и другим. Сделать это не так легко, как кажется, — назвать вещь своим именем. Реакционеры иногда кажутся либералами, глупые — умными, женщины — мужчинами. Но даже в самых затруднительных ситуациях аналитик обязан дать однозначную квалификацию объекту. Здесь многое позволено. Единственное, что запрещено, — это квалифицировать объект как белый и черный одновременно.

    Следствием данного правила является стопроцентная сумма частот всех градаций переменной. Если сумма частот превышает стопроцентную отметку, значит, по крайней мере некоторые единицы попали одновременно в два класса и посчитаны неоднократно. Так бывает, когда в вопроснике задают шкалу-ассорти, где можно выбрать и то, и другое, и третье. Например, спрашивается: «Что вы больше всего любите?» с вариантами ответов: мацу, шашлык, либерально-демократические свободы… Здесь можно предпочесть все подсказки вопросника, и стопроцентной суммы не получится, если хотя бы один из респондентов попал в классы любящих одновременно мацу и либерально-демократические свободы. Причина искажения в том, что приведенные позиции не составляют переменную, напротив, каждая из них — являет собой «обрезанную» версию переменной. Полноценная версия предполагает ответы «Да», «Нет» и «Не могу сказать». Правильно построенная переменная представляет собой одномерный континуум. В отличие от многосоставных измерений он не требует агрегации. Отсюда второе правило — правило единого основания классификации. Нельзя разделять людей на умных и рыжих, потому что и рыжие иногда оказываются умными. Нельзя смешивать две разные переменные в одном вопросе. Нельзя не учитывать и изменение смысла переменной при ее перемещении в иной контекст. Например, вопрос об отношении к интеллигентам, заданный в Москве и Чикаго, окажется двумя разными вопросами, потому что в русской традиции принято приписывать интеллигенту роль носителя нравственного начала, тогда как житель Чикаго не сразу догадается, кто имеется в виду под «интеллигентом».

    Третье правило — правило полноты. В изучаемой совокупности не должно быть ни одного объекта, не поддающегося идентификации по заданным значениям. Иными словами, объект должен быть распределен на континууме переменной и получить полагающееся ему место в одном из классов. Если же этого не происходит, процесс измерения «зависает» — линейку приложить просто не к чему и не к кому. Заметим, что позиция «Нет данных» решает проблему полноты, когда шкала не охватывает весь диапазон значений. Например, отказ респондента сообщить свой возраст не означает, что шкала возраста не имеет отношения к данному объекту. Примеры шкал, которые не имеют отношения к объекту, иначе говоря, не релевантны ему, многочисленны. Социологи часто пытаются осуществить замеры мнений, установок, других личностных характеристик, предполагая, что изучаемое свойство имеется у всех. Например, вопрос: «Как вы относитесь к Бурбулису?», задававшийся некоторыми центрами изучения общественного мнения в 1992 г., основывался на убеждении, что свойство «Отношение к Бурбулису» имеется у всех, кто попал в выборку. Исключалась сама возможность того, что у человека нет ни положительного, ни отрицательного отношения к Бурбулису. Позиция «Не могу сказать», казалось бы, включает в себя такого рода респондентов, однако сюда попадают не только не имеющие мнения, но и не имеющие самого признака.

    В социологических измерениях нередко возникает разновидность искусственно созданных эмерджентных переменных — переменных, порожденных самой процедурой. Люди, не имевшие до момента интервьюирования никакого отношения к изучаемому признаку, конструируют это отношение в процессе межличностной коммуникации с интервьюером, отвечая «положительно», «отрицательно» или чаще всего «нейтрально». Причины эмерджентных переменных связаны больше всего с влиянием интервьюера.

    Г. А. Погосян показывает о типичных обстоятельствах, при которых переменные описывают не столько самостоятельное речевое поведение респондента, сколько ситуацию сбора данных. В частности, Погосян показал, что подсказка ответа существенно изменяет частотное распределение.

    Из таблицы видно, что «подсказка» существенно увеличивает количество считающих, что хорошие специалисты имеют наиболее благоприятные шансы на продвижение по службе, и почти настолько же снижает количество указавших на угодливость. Если предположить, что открытые вопросы дают большую возможность для выражения самостоятельного мнения, подсказка приводит к артефакту: 62% выбрали соответствующую версию ответа, а не выразили свое мнение.

    Проектируя переменные, социолог стремится обеспечить их соответствие фактическому поведению объекта. В то же время он обязан организовать их в логическом отношении, пренебрегая тем обстоятельством, что «жизнь» часто бывает нелогичной и многозначной. Здесь намечается дилемма: либо описывать жизнь во всей противоречивости, либо конструировать схемы. В первом случае социологу лучше избрать для себя карьеру писателя, во втором случае необходимо постараться, чтобы логическая схема соответствовала действительности.

    Требования взаимооднозначного соответствия и единого основания содержат в себе определенное насилие над «человеческой» реальностью. В жизни «да» часто переходит в «нет», «демократы» называют себя коммунистами, а плюс оказывается минусом. Лучше всего работать с номиналиями, которые, как предполагается, в наибольшей степени соответствуют языку социального взаимодействия и поведения. Номинальные измерения в социологических и социально-экономических исследованиях расцениваются как фундаментальные для понимания самой природы социальной реальности. С.В. Чесноков основывает такой вывод на предположении, что номинальные переменные являются конечным итогом процедур эмпирической верификации теоретических понятий всегда, когда объектом исследований в той или иной мере являются люди, их сознание и поведение. «Это обусловлено тем, — пишет С.В. Чесноков, — что и социолог-исследователь, и люди, выразившие добрую волю контактировать с социологом в роли респондентов, выражают свои реакции, формируют и описывают социальное в образах и понятиях, знаками которых являются слова, а не числа»8. Отсюда следует предположение об ограниченных возможностях числового анализа данных. Гуманитарным измерением С.В. Чесноков называет любое именование, а детерминационным анализом — установление следования «если а, то b», где а и b — имена.

    Вне сомнения номинальные переменные, фиксирующие конкретные значения, лежат в фундаменте социологического словаря. Однако эта их особенность коренится не столько в «живом языке» социального общения, сколько в эквивалентности значений переменных протокольным фактофиксирующим высказываниям. Такого рода номинальные «протоколы» вне зависимости от их содержания лежат в фундаменте любых научных описаний. Собственно шкалы (континуумы) представляют собой способы организации номинальных значений в идеализированных метриках, но в любом случае должно соблюдаться требование взаимооднозначного соответствия единицы и значения переменной.

    Требования, предъявляемые к номинальным измерениям (идентификациям), должны выполняться и для шкал более высокого уровня: упорядоченных, интервальных и метрических.

    Упорядоченная шкала отличается от номинальной тем, что ее градации располагаются в определенном порядке относительно возрастания либо убывания интенсивности свойства.

    К классу упорядоченных относятся оценочные шкалы, установки и предпочтения. В социологии используются два вида упорядоченных шкал: ранги (рейтинги) и баллы. Ранги устанавливаются путем приписывания объекту места таким образом, что количество мест в точности равно количеству объектов. Например, можно распределить студентов по уровню подготовки и приписать каждому его место, начиная от первого и кончая последним. Иначе говоря, мы ранжируем их, зная, что вне зависимости от уровня знаний в группе должны быть первые и последние. Аналогичную систему производственного стимулирования, основанную на идее поощрения первых за счет последних, применил в 1960-е гг. В.М. Якушев, экспериментируя в одном из конструкторских бюро, — эксперимент получил известность под названием «Пульсар». Поскольку в любом случае кто-то окажется последним, группа ставится в условия конкуренции и борьбы за выживание.

    Рейтинг как тип социального оценивания является нормой определенного типа культуры, основанной на приоритете индивидуального интереса перед интересами коллективными. Жизненный и профессиональный успех осмысливается здесь как победа над другими. В такого рода игре считается глупым и даже аморальным дать товарищу по классу списать контрольную работу — ведь это означает уступить ему в соревновании. В конечном счете загнанных лошадей пристреливают, не так ли? Все это происходит не только в учебе, но и в бизнесе, семье, общении, религии. Теория рационального выбора основана как раз на идее оптимизации индивидуального поведения при ограниченных ресурсах.

    Балльные шкалы оперируют не местами, а школьными значениями. Эти значения не зависят друг от друга. В некотором смысле балльная шкала имеет эгалитарное происхождение. Все студенты, включая первого и последнего, могут получить тройки и быть счастливы в соответствии с теорией относительной депривации. Однако надежность такого рода шкал очень сомнительна, особенно в случаях, когда для означивания меток используются цифры. Расстояние от 4 до 5 — не то же самое, что расстояние от 2 до 3. У каждого преподавателя есть собственные предпочтения относительно участка континуума, на котором он распределяет студентов. Один ставит 2 и 3, другой 4 и 5. Как сравнивать их? Больших затруднений здесь не возникает, поскольку индивидуальные значения можно нормировать относительно среднего балла либо стандартного отклонения баллов у каждого преподавателя.

    Упорядоченные шкалы оценивания предполагают логическое балансирование позиций относительно нейтрального центра. Это требование отражает более общее правило построения шкал: каждая категория шкалы должна характеризоваться равной вероятностью «попадания» объекта при условии случайного распределения. Иными словами, количество градаций справа от центра должно быть равно количеству градаций слева, Часто в качестве «центра» шкалы используется значение «Не могу сказать». Так создается очевидная двусмысленность в интерпретации данных. «Не могу сказать» означает, что респондент не может выбрать ни одну из предложенных позиций; но если «Не могу сказать» стоит в центре сбалансированной шкалы, имеется в виду «Затрудняюсь предпочесть что-либо».

    Когда значения упорядоченной шкалы оценивания не имеют четко определенных границ, шкала превращается в полуупорядоченную. Фактически в социологических и психологических исследованиях чаще всего используются полуупорядоченные шкалы.

    Интервальные шкалы основаны на процедурах, обеспечивающих равные или примерно равные расстояния между градациями переменной. В данном случае сравниваются не значения переменных, а расстояния между значениями. Иными словами, любые два измерения данной эмпирической системы, осуществленные по шкале интервалов, переводятся друг в друга с помощью линейной функции.

    Если по номинальной шкале последовательность объектов устанавливается без особых затруднений, интервальная шкала предполагает решение проблемы сравнения расстояний между объектами. Это свойство линейных преобразований, характерное для интервальных шкал, демонстрируется числовым примером: 5 — 2 / 2 — 1 = 24 — 15 / 15 — 12 = 3. Отношение разностей между шкальными значениями является в данном случае постоянным». Если один из объектов интервальной шкалы отображается в ноль, можно говорить о шкале отношений — частном случае интервальной шкалы. В данном случае фиксируется начало отсчета12.

    Построить интервальную шкалу можно с помощью парных сравнений либо используя, как это делал Л. Терстоун, судейские процедуры. Сначала создается массив релевантных суждений, описывающих измеряемый признак, например отношение, установку либо оценку. Затем экспертам предлагается расположить суждения по категориям от наибольшей интенсивности признака до наименьшей. Предполагается, что распределение судейских оценок вокруг шкальных значений подчинено нормальному закону. Отбираются те суждения, которые получил и согласованные оценки судей. Таков метод построения «интервалов, кажущихся равными». Наиболее известные методы построения шкал интервалов разработаны Л. Терстоуном, Р. Ликертом, Л. Гуттманом. Однако в современной социологии они используются редко.

    Метрические, или абсолютные, шкалы соответствуют всем требованиям, предъявляемым к шкалам более низких классов, они имеют не только нулевую метку отсчета, но и единицу измерения времени, расстояния либо численности единиц. Здесь допустимы все преобразования с числами.

    Приписывание значений объектам осуществляется в трех формах: вербальной, графической и числовой. Вербальная интерпретация переменных наиболее распространена в массовых опросах. В качестве элементов шкалы здесь выступают суждения, свидетельствующие о мнениях, ценностях, состояниях. Насколько адекватно это свидетельство — особая проблема. Ясно одно: сами суждения не более чем свидетельство о реальности, которая стоит за ними. Поэтому вербальная интерпретация шкалы выполняет в языке повседневности роль своеобразного зонда. Ее принципиальное отличие от обыденной речи заключается в четкой концептуальной структуре, адаптированной к многообразным речевым ситуациям и контекстам. Даже открытый вопрос, казалось бы, максимально ориентированный на лексику респондента, работает только при условии однозначного концептуального кодирования.

    Вербально интерпретированные позиции шкалы воспринимаются достаточно отчетливо, если их немного. Но уже при выборе из пяти градаций начинаются затруднения. Например, категории «доволен» и «скорее доволен, чем недоволен» различаются со значительной степенью условности. В семипунктовой шкале возможности вербальной интерпретации оказываются исчерпанными. Здесь предпочтительнее графическое оформление шкалы, создающее возможность стандартного прочтения. Графическая интерпретация шкалы применяется в так называемых кросс-культурных исследованиях, где лексика инструмента требует перевода на язык респондента. Предполагается, что визуализация переменной в рисунке создает универсальный «паттерн» шкалы. Аналогичным образом используются жесты в межнациональном общении. Один из примеров инструмента, выполненного в графическом ключе, — картинки теста тематической апперцепции. Часто шкалы изображаются в виде линеек и пиктограмм. Хэрви Кэнтрил разработал «лестницу счастья»: на рисунке лестницы респондент должен отмечать свое нынешнее положение относительно наилучшего (верх лестницы) и наихудшего (низ лестницы) стечения обстоятельств, а затем указывать направление своего предполагаемого движения по «лестнице счастья». В одной из ранних версий шкалы установки Л. Терстоуном предлагался одиннадцатипунктовый континуум, выполненный в виде термометра.

    Числовая интерпретация иногда ошибочно отождествляется с вербальной. Использование цифр в качестве имен числительных не означает введения метрики. Например, в целях кодирования мужчин можно обозначить цифрой 1, а женщин — цифрой 2. В данном случае применены метки, но не числа. Числа предполагают осуществление операций аддитивности, арифметических действий. Круг числовых шкал ограничен интервальным и метрическим уровнями измерения, где установлены единицы интенсивности свойства.

    Существует 4 основных типа измерительных шкал.

    Номинативная шкала - это шкала, классифицирующая по названию: потеп (лат.) - имя, название. Название же не измеряется количественно, оно лишь позволяет отличить один объект от другого или одного субъекта от другого. Номинативная шкала - это способ классификации объектов или субъектов, распределения их по ячейкам классификации.

    Простейший случай номинативной шкалы - дихотомическая шкала, состоящая всего лишь из двух ячеек, например: "имеет братьев и сестер - единственный ребенок в семье"; "иностранец - соотечественник"; "проголосовал "за" - проголосовал "против"" и т.п.

    Признак, который измеряется по дихотомической шкале наименований, называется альтернативным. Он может принимать всего два значения. При этом исследователь зачастую заинтересован в одном из них, и тогда он говорит, что признак "проявился", если тот принял интересующее его значение, и что признак "не проявился", если он принял противоположное значение. Например: "Признак леворукости проявился у 8 испытуемых из 20". В принципе номинативная шкала может состоять из ячеек "признак проявился - признак не проявился".

    Более сложный вариант номинативной шкалы - классификация из трех и более ячеек, например: "экстрапунитивные - интрапунитивные - импунитивные реакции" или "выбор кандидатуры А - кандидатуры Б - кандидатуры В - кандидатуры Г" или "старший - средний - младший -единственный ребенок в семье" и др.

    Расклассифицировав все объекты, реакции или всех испытуемых по ячейкам классификации, мы получаем возможность от наименований перейти к числам, подсчитав количество наблюдений в каждой из ячеек.

    Как уже указывалось, наблюдение - это одна зарегистрированная реакция, один совершенный выбор, одно осуществленное действие или результат одного испытуемого.

    Допустим, мы определим, что кандидатуру А выбрали 7 испытуемых, кандидатуру Б - 11, кандидатуру В - 28, а кандидатуру Г - всего 1. Теперь мы можем оперировать этими числами, представляющими собой частоты встречаемости разных наименований, то есть частоты принятия признаком "выбор" каждого из 4 возможных значении. Далее мы можем сопоставить полученное распределение частот с равномерным или каким-то иным распределением.

    Таким образом, номинативная шкала позволяет нам подсчитывать частоты встречаемости разных "наименований", или значений признака, и затем работать с этими частотами с помощью математических методов.

    Единица измерения, которой мы при этом оперируем - количество наблюдений (испытуемых, реакций, выборов и т. п.), или частота. Точнее, единица измерения - это одно наблюдение. Такие данные могут быть обработаны с помощью метода χ 2 , биномиального критерия m и углового преобразования Фишера φ*.

    Порядковая шкала (ранговая) - это шкала, классифицирующая по принципу "больше - меньше". Если в шкале наименований было безразлично, в каком порядке мы расположим классификационные ячейки, то в порядковой шкале они образуют последовательность от ячейки "самое малое значение" к ячейке "самое большое значение" (или наоборот). Ячейки теперь уместнее называть классами, поскольку по отношению к классам употребимы определения "низкий", "средний" и "высокий" класс, или 1-й, 2-й, 3-й класс, и т.д.

    В порядковой шкале должно быть не менее трех классов, например "положительная реакция - нейтральная реакция - отрицательная реакция" или "подходит для занятия вакантной должности - подходит с оговорками - не подходит" и т. п.

    В порядковой шкале мы не знаем истинного расстояния между классами, а знаем лишь, что они образуют последовательность. Например, классы "подходит для занятия вакантной должности" и "подходит с оговорками" могут быть реально ближе друг к другу, чем класс подходит с оговорками" к классу "не подходит".

    От классов легко перейти к числам, если мы условимся считать, что низший класс получает ранг 1, средний класс - ранг 2, а высший класс - ранг 3, или наоборот. Чем больше классов в шкале, тем больше. У нас возможностей для математической обработки полученных данных и проверки статистических гипотез.

    Например, мы можем оценить различия между двумя выборками испытуемых по преобладанию у них более высоких или более низких рангов или подсчитать коэффициент ранговой корреляции между двумя переменными, измеренными в порядковой шкале, допустим, между оценками профессиональной компетентности руководителя, данными ему разными экспертами.

    Все психологические методы, использующие ранжирование, построены на применении шкалы порядка. Если испытуемому предлагается упорядочить 18 ценностей по степени их значимости для него, проранжировать список личностных качеств социального работника или 10 претендентов на эту должность по степени их профессиональной пригодности, то во всех этих случаях испытуемый совершает так называемое принудительное ранжирование, при котором количество рангов соответствует количеству ранжируемых субъектов или объектов (ценностей, качеств и т.п.).

    Независимо от того, приписываем ли мы каждому качеству или испытуемому один из 3-4 рангов или совершаем процедуру принудительного ранжирования, мы получаем в обоих случаях ряды значении, измеренные по порядковой шкале. Правда, если у нас всего 3 возможных класса и, следовательно, 3 ранга, и при этом, скажем, 20 ранжируемых испытуемых, то некоторые из них неизбежно получат одинаковые ранги. Все многообразие жизни не может уместиться в 3 градации, поэтому в один и тот же класс могут попасть люди, достаточно серьезно различающиеся между собой. С другой стороны, принудительное ранжирование, то есть образование последовательности из многих испытуемых, может искусственно преувеличивать различия между людьми. Кроме того, данные, полученные в разных группах, могут оказаться несопоставимыми, так как группы могут изначально различаться по уровню развития исследуемого качества, и испытуемый, получивший водной группе высший ранг, в другой получил бы всего лишь средний, и т.п.

    Выход из положения может быть найден, если задавать достаточно дробную классификационную систему, скажем, из 10 классов, или градаций, признака. В сущности, подавляющее большинство психологических методик, использующих экспертную оценку, построено на измерении одним и тем же "аршином" из 10, 20 или даже 100 градаций разных испытуемых в разных выборках.

    Итак, единица измерения в шкале порядка - расстояние в 1 класс или в 1 ранг, при этом расстояние между классами и рангами может быть разным (оно нам неизвестно). К данным, полученным по порядковой шкале, применимы все описанные в данной книге критерии и методы.

    Интервальная шкала - это шкала, классифицирующая по принципу "больше на определенное количество единиц - меньше на определенное количество единиц". Каждое из возможных значений признака отстоит от другого на равном расстоянии.

    Можно предположить, что если мы измеряем время решения задачи в секундах, то это уже явно шкала интервалов. Однако на самом деле это не так, поскольку психологически различие в 20 секунд между испытуемым А и Б может быть отнюдь не равно различию в 20 секунд между испытуемыми Б и Г, если испытуемый А решил задачу за 2 секунды, Б - за 22, В - за 222, а Г - за 242.

    Аналогичным образом, каждая секунда после истечения полутора минут в опыте с измерением мышечного волевого усилия на динамометре с подвижной стрелкой, по "цене", может быть, равна 10 или даже более секундам в первые полминуты опыта. "Одна секунда за год идет" - так сформулировал это однажды один испытуемый.

    Попытки измерять психологические явления в физических единицах - волю в секундах, способности в сантиметрах, а ощущение собственной недостаточности - в миллиметрах и т. п., конечно, понятны, ведь все-таки это измерения в единицах "объективно" существующего времени и пространства. Однако ни один опытный исследователь при этом не обольщает себя мыслью, что он совершает измерения по психологической интервальной шкале. Эти измерения принадлежат по-прежнему к шкале порядка, нравится нам это или нет.

    Можно с определенной долей уверенности утверждать лишь, что испытуемый А решил задачу быстрее Б, Б быстрее В, а В быстрее Г.

    Аналогичным образом, значения, полученные испытуемыми в баллах по любой нестандартизованной методике, оказываются измеренными лишь по шкале порядка. На самом деле равно интервальными можно считать лишь шкалы в единицах стандартного отклонения и процентильные шкалы, и то лишь при условии, что распределение значений в стандартизующей выборке было нормальным.

    Принцип построения большинства интервальных шкал построен на известном правиле "трех сигм": примерно 97,7-97,8% всех значений признака при нормальном его распределении укладываются в диапазоне М±3δ. Можно построить шкалу в единицах долей стандартного отклонения, которая будет охватывать весь возможный диапазон изменения признака, если крайний слева и крайний справа интервалы оставить открытыми (подробнее об этом будет сказано позже).

    Р.Б. Кеттелл предложил, например, шкалу стенов - "стандартной десятки". Среднее арифметическое значение в "сырых" баллах принимается за точку отсчета. Вправо и влево отмеряются интервалы, равные 1/2 стандартного отклонения. На Рис. 2 представлена схема вычисления стандартных оценок и перевода "сырых" баллов в стены по шкале N 16-факторного личностного опросника Р. Б. Кеттелла.

    Рис. 2. Схема вычисления стандартных оценок (стенов) по фактору N 16- факторного личностного опросника Р. Б. Кеттелла; снизу указаны интервалы в единицах 1/2 стандартного отклонения

    Справа от среднего значения будут располагаться интервалы, равные 6, 7, 8, 9 и 10 стенам, причем последний из этих интервалов открыт. Слева от среднего значения будут располагаться интервалы, равные 5, 4, 3, 2 и 1 стенам, и крайний интервал также открыт. Теперь мы поднимаемся вверх, к оси "сырых баллов", и размечаем границы интервалов в единицах "сырых" баллов. Поскольку М=10,2; δ=2,4, вправо мы откладываем 1/2δ т.е. 1,2 "сырых" балла. Таким образом, граница интервала составит: (10,2 + 1,2) = 11,4 "сырых" балла. Итак, границы интервала, соответствующего 6 стенам, будут простираться от 10,2 до 11,4 баллов. В сущности, в него попадает только одно "сырое" значение - 11 баллов. Влево от средней мы откладываем 1/2δ и получаем границу интервала: 10,2-1,2=9. Таким образом, границы интервала, соответствующие 9 стенам, простираются от 9 до 10,2. В этот интервал попадают уже два "сырых" значения - 9 и 10. Если испытуемый получил 9 "сырых" баллов, ему начисляется теперь 5 стенов; если он получил 11 "сырых" баллов - 6 стенов, и т. д.

    Мы видим, что в шкале стенов иногда за разное количество "сырых" баллов будет начисляться одинаковое количество стенов. Например, за 16, 17, 18, 19 и 20 баллов будет начисляться 10 стенов, а за 14 и 15 - 9 стенов и т. д.

    В принципе, шкалу стенов можно построить по любым данным, измеренным по крайней мере в порядковой шкале, при объеме выборки п>200 и нормальном распределении признака 2 .

    Другой способ построения равно интервальной шкалы - группировка интервалов по принципу равенства накопленных частот. При нормальном распределении признака в окрестности среднего значения группируется большая часть всех наблюдений, поэтому в этой области среднего значения интервалы оказываются меньше, уже, а по мере удаления от центра распределения они увеличиваются, (см. Рис. 3). Следовательно, такая процентильная шкала является равно интервальной только относительно накопленной частоты.

    Рис. 3. Процентильная шкала; сверху для сравнения указаны интервалы в единицах стандартного отклонения

    Построение шкал равных интервалов по данным, полученным по шкале порядка, напоминает трюк с веревочной лестницей, на который ссылался С. Стивенс. Мы сначала поднимаемся по лестнице, которая ни на чем не закреплена, и добираемся до лестницы, которая закреплена. Однако каким путем мы оказались на ней? Измерили некую психологическую переменную по шкале порядка, подсчитали средние и стандартные отклонения, а затем получили, наконец, интервальную шкалу. Как отмечал Стивенс "Такому нелегальному использованию статистики может быть дано известное прагматическое оправдание; во многих случаях оно приводит к плодотворным результатам".

    Многие исследователи не проверяют степень совпадения полученного ими эмпирического распределения с нормальным распределением, и тем более не переводят получаемые значения в единицы долей стандартного отклонения или процентили, предпочитая пользоваться "сырыми" данными. "Сырые" же данные часто дают скошенное, срезанное по краям или двухвершинное распределение. На Рис. 4 представлено распределение показателя мышечного волевого усилия на выборке из 102 испытуемых. Распределение с удовлетворительной точностью можно считать нормальным (χ 2 =12,7 при v=9, М=89,75, δ= 25,1).

    Рис. 4 Гистограмма и плавная кривая распределения показателя мышечного волевого усилия (n=102)

    На Рис. 5 представлено распределение показателя самооценки по шкале методики Дж. Менестера - Р.Корзини "Уровень успеха, которого я должен был достичь уже сейчас" (n=356). Распределение значимо отличается от нормального

    (χ 2 = 58,8, при v=7; p<0,01; М=80,64; δ=16,86).

    Рис. 5. Гистограмма и плавная кривая распределения показателя должного успеха (n=356).

    С такими "ненормальными" распределениями приходится встречаться очень часто, чаще, может быть, чем с классическими нормальными. И дело здесь не в каком-то изъяне, а в самой специфике психологических признаков. По некоторым методикам от 10 до 20% испытуемых получают оценку "ноль" - например, в их рассказах не встречается ни одной словесной формулировки, которая отражала бы мотив "надежда на успех" или "боязнь неудачи" (методика Хекхаузена). То, что испытуемый получил оценку "ноль", нормально, но распределение таких оценок не может быть нормальным, как бы мы ни увеличивали объем выборки

    Шкала отношений

    Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака Шкала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов.

    Шкала отношений по сути очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений

    Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

    Очевидно, что все измерения должны проводиться на определенном материале. И здесь следует остановиться на основных определениях, относящихся к понятию Выборка .

    Генеральная совокупность - это все множество объектов, в отношении которого формулируется исследовательская гипотеза.

    Выборка - это ограниченная по численности группа объектов (в психологии - испытуемых, респондентов), специально отбираемая из генеральной совокупности для изучения ее свойств. Соответственно, изучение на выборке свойств генеральной совокупности называется выборочным исследованием. Практически все психологические исследования являются выборочными, а их выводы распространяются на генеральные совокупности.

    Репрезентативность выборки - иными словами, ее представительность - это способность выборки представлять изучаемые явления достаточно полно-с точки зрения их изменчивости в генеральной совокупности.

    Стратифицированная выборка , или отбор по свойствам генеральной совокупности (разделение выборки на «страты». Он предполагает предварительное определение тех качеств, которые могут влиять на изменчивость изучаемого свойства (это может быть пол, уровень дохода или образования и т. д.).

    Статистическая достоверность , или статистическая значимость, результатов исследования определяется при помощи методов статистического вывода, которые предъявляют определенные требования к численности, или объему выборки.