Карл гаусс интересные факты. Портал интересных увлечений

Самым величайшим математиком всех времен и народов принято считать знаменитого ученого из Европы Иоганна Карла Фридриха Гаусса. Несмотря на то, что сам Гаусс был выходцем из беднейших слоев общества: его отец был водопроводчиком, а дед — крестьянином, судьба уготовила ему великую славу. Мальчик уже в возрасте трех лет показал себя вундеркиндом, он умел считать, писать, читать, даже помогал своему отцу в его работе.


Юное дарование, конечно же, было замечено. Его любознательность перешла по наследству от дяди, брата матери. Карл Гаусс – сын бедного немца не только получил образование в колледже, но уже в возрасте 19-ти лет считался лучшим европейским математиком того времени.

  1. Сам Гаусс утверждал о том, что считать он начал раньше, чем говорить.
  2. У великого математика было хорошо развито слуховое восприятие: однажды в возрасте 3-х лет он на слух определил ошибку в подсчетах, выполняемых его отцом, когда тот подсчитывал заработок своих помощников.
  3. Гаусс довольно недолгое время провел в первом классе, его очень быстро перевели во второй. Учителя сразу распознали в нем талантливого ученика.
  4. Карлу Гауссу довольно легко давалось не только изучение цифр, но и языкознание. Он мог свободно говорить на нескольких языках. Математик довольно долго в юном возрасте не мог определиться, какую ученую стезю ему стоит выбрать: точные науки, либо же филологию. Выбрав в конечном итоге своим увлечением математику, Гаусс позднее писал свои труды на латыни, английском, немецком языках.
  5. В возрасте 62-х лет Гаусс начал активно изучать русский язык. Ознакомившись с трудами великого русского математика Николая Лобачевского, он захотел прочесть их в оригинале. Современники отмечали тот факт, что Гаусс, став знаменитым, никогда не читал трудов других математиков: обычно он знакомился с концепцией и сам старался ее либо доказать, либо опровергнуть. Труд Лобачевского стал исключением.
  6. Обучаясь в колледже, Гаусс интересовался трудами Ньютона, Лагранжа, Эйлера и прочих других выдающихся ученых.
  7. Самым плодотворным периодом в жизни великого европейского математика считается время его обучения в колледже, где им были созданы закон взаимности квадратичных вычетов и метод наименьших квадратов, а также была начата работа по исследованию нормального распределения ошибок.
  8. После учебы Гаусс отправился жить в Брауншвейг, где он был удостоен стипендии. Там же математик начал работу над доказыванием основной теоремы алгебры.
  9. Карл Гаусс являлся членом-корреспондентом Петербургской Академии наук. Данное почетное звание он получил после того, как обнаружил месторасположение малой планеты Цереры, произведя ряд сложнейших математических расчетов. Вычисление траектории Цереры математическим путем сделало имя Гаусса известным всему ученому миру.
  10. Изображение Карла Гаусса имеется на денежной банкноте Германии достоинством в 10 марок.
  11. Имя великого европейского математика отмечено на спутнике Земли – Луне.
  12. Гаусс разработал абсолютную систему единиц: принял за единицу массы – 1 грамм, за единицу времени – 1 секунду, за единицу длины – 1 миллиметр.
  13. Карл Гаусс известен своими исследованиями не только в алгебре, но также и в физике, геометрии, геодезии и астрономии.
  14. В 1836 году совместно со своим другом физиком Вильгельмом Вебером Гаусс создал общество по изучению магнетизма.
  15. Гаусс очень боялся критики и непонимания со стороны его современников, направленных в его адрес.
  16. В среде уфологов бытует мнение, что самым первым человеком, предложившим установить контакт с внеземными цивилизациями, был великий немецкий математик — Карл Гаусс. Он высказал свою точку зрения, согласно которой нужно было в сибирских лесах вырубить участок в форме треугольника и засеять его пшеницей. Инопланетяне, увидев такое необычное поле в виде аккуратной геометрической фигуры, должны были понять, что на планете Земля живут разумные существа. Но доподлинно неизвестно, выступал ли на самом деле Гаусс с подобным заявлением, либо же, эта история является чьей-то выдумкой.
  17. В 1832 году Гауссом была разработана конструкция электрического телеграфа, которую он спустя некоторое время доработал и усовершенствовал совместно с Вильгельмом Вебером.
  18. Великий европейский математик был дважды женат. Своих жен он пережил, а они в свою очередь оставили ему 6 детей.
  19. Гаусс проводил исследования в области оптоэлектроники и электростатики.

Гаусс – математический король

На жизнь юного Карла повлияло желание его матери сделать из него не грубого и неотесанного человека, каким был его отец, а умную и разностороннюю личность . Она искренне радовалась успехам сына и боготворила его до конца своей жизни.

Гаусса многие ученые считали отнюдь не математическим королем Европы, его называли королем мира за все исследования, труды, гипотезы, доказательства, созданные им.

В последние годы жизни математического гения ученые мужи воздавали ему славу и почет, но, несмотря на популярность и мировую известность Гаусс так и не обрел полноценного счастья. Однако же по воспоминаниям его современников великий математик предстает позитивным, дружелюбным и жизнерадостным человеком.

Гаусс работал практически до своей кончины – 1855 года . До самой смерти этот талантливый человек сохранял ясность ума, юношескую жажду к знаниям и вместе с тем безграничное любопытство.

Карл Гаусс (1777-1855), - немецкий математик, астроном и физик. Создал теорию «первообразных» корней из которой вытекало построение семнадцатиугольника. Один из величайших математиков всех времён.
Карл Фридрих Гаусс родился 30 апреля 1777 года в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери яркий интеллект.
В семь лет Карл Фридрих поступил в Екатерининскую народную школу. Поскольку считать там начинали с третьего класса, первые два года на маленького Гаусса внимания не обращали. В третий класс ученики обычно попадали в десятилетнем возрасте и учились там до конфирмации (пятнадцати лет). Учителю Бюттнеру приходилось заниматься одновременно с детьми разного возраста и разной подготовки. Поэтому он давал обычно части учеников длинные задания на вычисление, с тем чтобы иметь возможность беседовать с другими учениками. Однажды группе учеников, среди которых был Гаусс, было предложено просуммировать натуральные числа от 1 до 100. По мере выполнения задания ученики должны были класть на стол учителя свои грифельные доски. Порядок досок учитывался при выставлении оценок. Десятилетний Карл положил свою доску, едва Бюттнер кончил диктовать задание. К всеобщему удивлению, лишь у него ответ был правилен. Секрет был прост: пока диктовалось задание. Гаусс успел для себя открыть заново формулу для суммы арифметической прогрессии! Слава о чудо-ребенке распространилась по маленькому Брауншвейгу.
В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать - математиком или филологом.
О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду - герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счета. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Геттингенский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.
В 1795 году Гаусса охватывает страстный интерес к целым числам. Незнакомый с какой бы то ни было литературой, он должен был все создавать себе сам. И здесь он вновь проявляет себя как незаурядный вычислитель, пролагающий пути в неизвестное. Осенью того же года Гаусс переезжает в Геттинген и прямо-таки проглатывает впервые попавшуюся ему литературу: Эйлера и Лагранжа.
«30 марта 1796 года наступает для него день творческого крещения. - пишет Ф. Клейн. - Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории «первообразных» корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатиугольника... Это событие явилось поворотным пунктом жизни в Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».
Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времен». Сколь трудно было это открытие постигнуть. Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошел, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс - величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли...» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.
Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.
«Рассказывают, что Архимед завещал построить над своей могилой памятник в виде шара и цилиндра в память о том, что он нашел отношение объемов цилиндра и вписанного в него шара - 3:2. Подобно Архимеду, Гаусс выразил желание, чтобы в памятнике на его могиле был увековечен семнадцатиугольник. Это показывает, какое значение сам Гаусс придавал своему открытию. На могильном камне Гаусса этого рисунка нет, памятник, воздвигнутый Гауссу в Брауншвейге, стоит на семнадцатиугольном постаменте, правда, едва заметном зрителю», - писал Г. Вебер.
30 марта 1796 года, в день, когда был построен правильный семнадцатиугольник, начинается дневник Гаусса - летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашел полное доказательство гипотезы Эйлера. Впрочем, Гаусс еще не знал о работах своих великих предшественников. Весь нелегкий путь к «золотой теореме» он прошел самостоятельно!
Два великих открытия Гаусс сделал на протяжении всего десяти дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, открыв как бы заново за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.
В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. Книга была издана на средства герцога и ему посвящена. В изданном виде книга состояла из семи частей. На восьмую часть денег не хватило. В этой части речь должна была идти об обобщении закона взаимности на степени выше второй, в частности - о биквадратичном законе взаимности. Полное доказательство биквадратичного закона Гаусс нашел лишь 23 октября 1813 года, причем в дневниках он отметил, что это совпало с рождением сына.
За пределами «Арифметических исследований» Гаусс, по существу, теорией чисел больше не занимался. Он лишь продумывал и доделывал то, что было задумано в те годы.
«Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел В Брауншвейге Гаусс не имел литературы, необходимой для работы над Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвященную доказательству Основной теоремы алгебры ~ утверждения о том, что всякое алгебраическое уравнение имеет корень, который может быть числом действительным или мнимым, одним словом - комплексным. Гаусс критически разбирает все предшествующие опыты и доказательства и с большой тщательностью проводит идею до Ламбера. Безупречного доказательства все же не получилось, так как не хватало строгой теории непрерывности. В дальнейшем Гаусс придумал еще три доказательства Основной теоремы (последний раз - в 1848 году).
«Математический век» Гаусса - менее десяти лет. При этом большую часть времени заняли работы, оставшиеся неизвестными современникам (эллиптические функции).
Гаусс считал, что может не торопиться с публикацией своих результатов, тридцать лет так и было. Но в 1827 году сразу два молодых математика - Абель и Якоби - опубликовали многое из того, что было им получено.
О работах Гаусса по неевклидовой геометрии узнали лишь при публикации посмертного архива. Так Гаусс обеспечил себе возможность спокойно работать отказом обнародовать свое великое открытие, вызвав несмолкающие по сей день споры о допустимости занятой им позиции.
С наступлением нового века научные интересы Гаусса решительно сместились в сторону от чистой математики. Он много раз эпизодически будет обращаться к ней, и каждый раз получать результаты, достойные гения. В 1812 году он опубликовал работу о гипергеометрической функции. Широко известна заслуга Гаусса в геометрической интерпретации комплексных чисел.
Новым увлечением Гаусса стала астрономия. Одной из причин, по которой он занялся новой наукой, была прозаическая. Гаусс занимал скромное положение приват-доцента в Брауншвейге, получая 6 талеров в месяц.
Пенсия в 400 талеров от герцога-покровителя не настолько улучшила его положение, чтобы он мог содержать семью, а он подумывал о женитьбе. Получить где-нибудь кафедру по математике было не просто, да Гаусс и не очень стремился к активной преподавательской деятельности. Расширяющаяся сеть обсерваторий делала карьеру астронома более доступной, Гаусс начал интересоваться астрономией еще в Геттингене. Кое-какие наблюдения он проводил в Брауншвейге, причем часть герцогской пенсии он израсходовал на покупку секстанта. Он ищет достойную вычислительную задачу.
Ученый вычисляет траекторию предполагаемой новой большой планеты. Немецкий астроном Ольберс, опираясь на вычисления Гаусса, нашел планету (ее назвали Церерой). Это была подлинная сенсация!
25 марта 1802 году Ольберс открывает еще одну планету - Палладу. Гаусс быстро вычисляет ее орбиту, показав, что и она располагается между Марсом и Юпитером. Действенность вычислительных методов Гаусса стала для астрономов несомненной.
К Гауссу приходит признание. Одним из признаков этого было избрание его членом-корреспондентом Петербургской академии наук. Вскоре его пригласили занять место директора Петербургской обсерватории. В то же время Ольберс предпринимает усилия, чтобы сохранить Гаусса для Германии. Еще в 1802 году он предлагает куратору Геттингенского университета пригласить Гаусса на пост директора вновь организованной обсерватории. Ольберс пишет при этом, что Гаусс «к кафедре математики имеет положительное отвращение». Согласие было дано, но переезд состоялся лишь в конце 1807 году. За это время Гаусс женился. «Жизнь представляется мне весной со всегда новыми яркими цветами», - восклицает он. В 1806 году умирает от ран герцог, к которому Гаусс, повидимому, был искренне привязан. Теперь ничто не удерживает его в Брауншвейге.
Жизнь Гаусса в Геттингене складывалась несладко. В 1809 году после рождения сына умерла жена, а затем и сам ребенок. Вдобавок Наполеон обложил Геттинген тяжелой контрибуцией. Сам Гаусс должен был заплатить непосильный налог в 2000 франков. За него попытались внести деньги Ольберс и, прямо в Париже, Лаплас. Оба раза Гаусс гордо отказался.
Однако нашелся еще один благодетель, на этот раз - аноним, и деньги возвращать было некому. Только много позднее узнали, что это был курфюрст Майнцский, друг Гёте. «Смерть мне милее такой жизни», - пишет Гаусс между заметками по теории эллиптических функций. Окружающие не ценили его работ, считали его, по меньшей мере, чудаком. Ольберс успокаивает Гаусса, говоря, что не следует рассчитывать на понимание людей: «их нужно жалеть и им служить».
В 1809 году выходит знаменитая «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Гаусс излагает свои методы вычисления орбит. Чтобы убедиться в силе своего метода, он повторяет вычисление орбиты кометы 1769 года, которую в свое время за три дня напряженного счета вычислил Эйлер. Гауссу на это потребовался час. В книге был изложен метод наименьших квадратов, остающийся по сей день одним из самых распространенных методов обработки результатов наблюдений.
На 1810 год пришлось большое число почестей: Гаусс получил премию Парижской академии наук и золотую медаль Лондонского королевского общества, был избран в несколько академий.
Регулярные занятия астрономией продолжались почти до самой смерти. Знаменитую комету 1812 года (которая «предвещала» пожар Москвы!) всюду наблюдали, пользуясь вычислениями Гаусса. 28 августа 1851 года Гаусс наблюдал солнечное затмение. У Гаусса было много учеников-астрономов: Шумахер, Герлинг, Николаи, Струве. Крупнейшие немецкие геометры Мебиус и Штаудт учились у него не геометрии, а астрономии. Он состоял в активной переписке со многими астрономами регулярно.
К 1820 году центр практических интересов Гаусса переместился в геодезию. Геодезии мы обязаны тем, что на сравнительно короткое время Математика вновь стала одним из главных дел Гаусса. В 1816 году он думает об обобщении основной задачи картографии - задачи об отображении одной поверхности на другую «так, чтобы отображение было подобно отображаемому в мельчайших деталях».
В 1828 году вышел в свет основной геометрический мемуар Гаусса «Общие исследования о кривых поверхностях». Мемуар посвящен внутренней геометрии поверхности, т. е. тому, что связано со структурой самой этой поверхности, а не с ее положением в пространстве.
Оказывается, «не покидая поверхности», можно узнать, кривая она или нет. «Настоящую» кривую поверхность ни при каком изгибании нельзя развернуть на плоскость. Гаусс предложил числовую характеристику меры искривления поверхности.
К концу двадцатых годов Гаусс, перешедший пятидесятилетний рубеж, начинает поиски новых для себя областей научной деятельности. Об этом свидетельствуют две публикации 1829 и 1830 годов. Первая из них несет печать размышлений об общих принципах механики (здесь строится «принцип наименьшего принуждения» Гаусса); другая посвящена изучению капиллярных явлений. Гаусс решает заниматься физикой, но его узкие интересы еще не определились.
В 1831 году он пытается заниматься кристаллографией. Это очень трудный год в жизни Гаусса" умирает его вторая жена, у него начинается тяжелейшая бессонница. В этом же году в Геттинген приезжает приглашенный по инициативе Гаусса 27-летний физик Вильгельм Вебер Гаусс познакомился с ним в 1828 году в доме Гумбольдта Гауссу было 54 года, о его замкнутости ходили легенды, и все же в Вебере он нашел сотоварища по занятиям наукой, какого он никогда не имел прежде.
Интересы Гаусса и Вебера лежали в области электродинамики и земного магнетизма. Их деятельность имела не только теоретические, но и практические результаты. В 1833 году они изобретают электромагнитный телеграф. Первый телеграф связывал магнитную обсерваторию с городом Нейбургом.
Изучение земного магнетизма опиралось как на наблюдения в магнитной обсерватории, созданной в Геттингене, так и на материалы, которые собирались в разных странах «Союзом для наблюдения над земным магнетизмом», созданным Гумбольдтом после возвращения из Южной Америки. В это же время Гаусс создает одну из важнейших глав математической физики - теорию потенциала.
Совместные занятия Гаусса и Вебера были прерваны в 1843 году, когда Вебера вместе с шестью другими профессорами изгнали из Геттингена за подписание письма королю, в котором указывались нарушения последним конституции (Гаусс не подписал письма) Возвратился в Геттинген Вебер лишь в 1849 году, когда Гауссу было уже 72 года.

Математик и историк математики Джереми Грей рассказывает Гауссе и его огромном вкладе в науку, о теории квадратичных форм, открытии Цереры, и неевклидову геометрию*



Портрет Гаусса Эдуарда Ритмюллера на террасе обсерватории Геттингена // Карл Фридрих Гаусс: Титан науки Г. Уолдо Даннингтона, Джереми Грея, Фриц-Эгберт Дохе


Карл Фридрих Гаусс был немецким математиком и астрономом. Он родился у бедных родителей в Брауншвейге в 1777 году и скончался в Геттингене в Германии в 1855 году, и к тому времени все, кто его знал, считали его одним из величайших математиков всех времен.

Изучение Гаусса

Как мы изучаем Карла Фридриха Гаусса? Ну, когда дело доходит до его ранней жизни, мы должны полагаться на семейные истории, которыми поделилась его мать, когда он стал знаменитым. Конечно, эти истории склонны к преувеличению, но его замечательный талант был заметен, уже когда Гаусс был в раннем подростковом возрасте. С тех пор у нас появляется все больше записей о его жизни.
Когда Гаусс вырос и стал замечен, у нас начали появляться письма о нем людьми, которые его знали, а также официальными отчетами разного рода. У нас также есть длинная биография его друга, написанная на основе бесед, которые они имели в конце жизни Гаусса. У нас есть его публикации, у нас очень много его писем к другим людям, и много материала он написал, но так и не опубликовал. И, наконец, у нас есть некрологи.

Ранняя жизнь и путь к математике

Отец Гаусса занимался различными делами, был рабочим, мастером строительной площадки и купеческим ассистентом. Его мать была умной, но едва грамотной, и посвятила всю себя Гауссу до самой своей смерти в возрасте 97 лет. Похоже, что Гаусс был замечен как одаренный ученик еще в школе, в одиннадцать лет, его отца убедили отправить его в местную академическую школу, вместо того, чтобы заставить его работать. В то время Герцог Брауншвейгский стремился модернизировать своё герцогство, и привлекал талантливых людей, которые бы помогли ему в этом. Когда Гауссу исполнилось пятнадцать, герцог привел его в коллегию Каролинум для получения им высшего образования, хотя к тому времени Гаусс уже самостоятельно изучил латынь и математику на уровне высшей школы. В возрасте восемнадцати лет он поступил в Геттингенский университет, а в двадцать один уже написал докторскую диссертацию.



Первоначально Гаусс собирался изучать филологию, приоритетный предмет в Германии того времени, но он также проводил обширные исследования по алгебраическому построению правильных многоугольников. В связи с тем, что вершины правильного многоугольника из N сторон задаются решением уравнения (что численно равно . Гаусс обнаружил, что при n = 17 уравнение факторизуется таким образом, что правильный 17-сторонний многоугольник может быть построен только по линейке и циркуля. Это был совершенно новый результат, греческие геометры не подозревали об этом, и открытие вызвало небольшую сенсацию - новости об этом даже были опубликованы в городской газете. Этот успех, который пришел, когда ему едва исполнилось девятнадцать, заставил его принять решение изучать математику.


Но то, что сделало его знаменитым, было два совершенно разных явления в 1801 году. Первым было издание его книги под названием «Арифметические рассуждения», которая полностью переписала теорию чисел и привела к тому, что она(теория чисел) стала, и до сих пор является, одним из центральных предметов математики. Она включает в себя теорию уравнений вида x ^ n - 1, являющейся одновременно очень оригинальной и в то же время легко воспринимаемой, а также гораздо более сложную теорию, называемую теорией квадратичной формой. Это уже привлекло внимание двух ведущих французских математиков, Джозефа Луи Лагранжа и Адриена Мари Лежандра, которые признали, что Гаусс ушел очень далеко за пределы всего того, что они делали.


Вторым важным событием было повторное открытие Гауссом первого известного астероида. Он был найден в 1800 году итальянским астрономом Джузеппе Пьяцци, который назвал его Церерой в честь римской богини земледелия. Он наблюдал ее в течение 41 ночи, прежде чем она исчезла за солнцем. Это было очень захватывающее открытие, и астрономы очень хотели знать, где он появится снова. Только Гаусс рассчитал это правильно, чего не сделал никто из профессионалов, и это сделало его имя как астронома, которым он и остался на многие годы вперед.

Поздняя жизнь и семья

Первая работа Гаусса была математиком в Геттингене, но после открытия Цереры, а затем и других астероидов он постепенно переключил свои интересы на астрономию, а в 1815 году стал директором Геттингенской обсерватории, и занимал эту должность почти до самой смерти. Он также оставался профессором математики в Геттингенском университете, но это, похоже, не требовало от него большого преподавания, а записи о его контактах с молодыми поколениями была довольно незначительной. Фактически, он, кажется, был отчужденной фигурой, более комфортной и общительной с астрономами, и немногими хорошими математиками в его жизни.


В 1820-х годах он руководил массированным исследованием северной Германии и южной Дании и в ходе этого переписывал теорию геометрии поверхностей или дифференциальную геометрию, как ее называют сегодня.


Гаусс женился дважды, в первый раз довольно счастливо, но когда его жена Джоанна умерла во время родов в 1809 году, он снова женился на Минне Вальдек, но этот брак оказался менее успешным; Она умерла в 1831 году. У него было трое сыновей, двое из которых эмигрировали в Соединенные Штаты, скорее всего, потому что их отношения с отцом были проблемными. В результате в Штатах существует активная группа людей, которые ведут свое происхождение от Гаусса. У него также было две дочери, по одной от каждого брака.

Величайший вклад в математику

Рассматривая вклад Гаусса в этой области, мы можем начать с метода наименьших квадратов в статистике, который он изобрел, чтобы понять данные Пьяцци и найти астероид Церера. Это был прорыв в усреднении большого количества наблюдений, все из которых были немного не точными, чтобы получить из них наиболее достоверную информацию. Что касается теории чисел, говорить об этом можно очень долго, но он сделал замечательные открытия о том, какие числа могут быть выражены квадратичными формами, которые являются выражениями вида . Вам может казаться, что это важно, но Гаусс превратил то, что было собранием разрозненных результатов в систематическую теорию, и показал, что многие простые и естественные гипотезы имеют доказательства, которые лежат в том, что похоже на другие разделы математики вообще. Некоторые приемы, которые он изобрел, оказались важными и в других областях математики, но Гаусс обнаружил их еще до того, как эти ветви были правильно изучены: теория групп - пример.


Его работа по уравнениям вида и, что более удивительно, по глубоким особенностям теории квадратичных форм, открыла использование комплексных чисел, например, для доказательства результатов о целых числах. Это говорит о том, что многое происходило под поверхностью предмета.


Позже, в 1820-х годах, он обнаружил, что существует концепция кривизны поверхности, которая является неотъемлемой частью поверхности. Это объясняет, почему некоторые поверхности не могут быть точно скопированы на другие, без преобразований, как мы не можем сделать точную карту Земли на листе бумаги. Это освободило изучение поверхностей от изучения твердых тел: у вас может быть яблочная кожура, без необходимости представления яблока под ней.



Поверхность с отрицательной кривизной, где сумма углов треугольника меньше, чем у треугольника на плоскости //source:Wikipedia


В 1840-х годах, независимо от английского математика Джорджа Грина, он изобрел предмет теории потенциала, который является огромным расширением исчисления функций нескольких переменных. Это правильная математика для изучения гравитации и электромагнетизма и с тех пор используется во многих областях прикладной математики.


И мы также должны помнить, что Гаусс открыл, но не опубликовал довольно много. Никто не знает, почему он так много сделал для себя, но одна теория состоит в том, что поток новых идей, которые он держал в голове был еще более захватывающим. Он убедил себя в том, что геометрия Евклида не обязательно истинна и что по крайней мере одна другая геометрия логически возможна. Слава этому открытию досталась двум другим математикам, Бойяю в Румынии-Венгрии и Лобачевскому в России, но только после их смерти - настолько это было спорно в то время. И он много работал над так называемыми эллиптическими функциями - вы можете рассматривать их как обобщения синусоидальных и косинусных функций тригонометрии, но, если более точно, они являются сложными функциями комплексной переменной, а Гаусс изобрел целую теорию из них. Десять лет спустя Абель и Якоби прославились тем, что сделали то же самое, не зная, что это уже сделал Гаусс.

Работа в других областях

После своего повторного открытия первого астероида, Гаусс много работал над поиском других астероидов и вычислением их орбит. Это была трудная работа в докомпьютерную эпоху, но он обратился к своим талантам, и он, похоже, почувствовал, что это работа позволила ему выплатить свой долг принцу и обществу, которое дало ему образование.


Кроме того, во время съемки в северной Германии он изобрел гелиотроп для точной съемки, а в 1840-х годах он помог создать и построить первый электрический телеграф. Если бы он также подумал об усилителях, он мог бы отметиться и в этом, так как без них сигналы не могли путешествовать очень далеко.

Прочное Наследие

Есть много причин, почему Карл Фридрих Гаусс по-прежнему так актуален сегодня. Прежде всего, теория чисел превратилась в огромный предмет с репутацией очень сложного. С тех пор некоторые из лучших математиков тяготеют к нему, и Гаусс дал им способ приблизиться к нему. Естественно, некоторые проблемы, которые он не смог решить, привлекли к себе внимание, поэтому вы можете сказать, что он создал целую область исследований. Оказывается, у этого также есть глубокие связи с теорией эллиптических функций.


Кроме того, его открытие внутренней концепции кривизны обогатило все изучение поверхностей и вдохновило на многие годы работы последующие поколения. Любой, кто изучает поверхности, от предприимчивых современных архитекторов до математиков, находится у него в долгу.


Внутренняя геометрия поверхностей простирается до идеи внутренней геометрии объектов более высокого порядка, таких как трехмерное пространство и четырехмерное пространство-время.


Общая теория относительности Эйнштейна и вся современная космология, в том числе изучение черных дыр, стали возможными благодаря тому, что Гаусс совершил этот прорыв. Идея неевклидовой геометрии, столь шокировавшая в свое время, заставляла людей осознавать, что может быть много видов строгой математики, некоторые из которых могут быть более точными или полезными - или просто интересными -, чем те, о которых мы знали.



Неевклидова геометрия //

Математик и историк математики Джереми Грей рассказывает Гауссе и его огромном вкладе в науку, о теории квадратичных форм, открытии Цереры, и неевклидову геометрию*



Портрет Гаусса Эдуарда Ритмюллера на террасе обсерватории Геттингена // Карл Фридрих Гаусс: Титан науки Г. Уолдо Даннингтона, Джереми Грея, Фриц-Эгберт Дохе


Карл Фридрих Гаусс был немецким математиком и астрономом. Он родился у бедных родителей в Брауншвейге в 1777 году и скончался в Геттингене в Германии в 1855 году, и к тому времени все, кто его знал, считали его одним из величайших математиков всех времен.

Изучение Гаусса

Как мы изучаем Карла Фридриха Гаусса? Ну, когда дело доходит до его ранней жизни, мы должны полагаться на семейные истории, которыми поделилась его мать, когда он стал знаменитым. Конечно, эти истории склонны к преувеличению, но его замечательный талант был заметен, уже когда Гаусс был в раннем подростковом возрасте. С тех пор у нас появляется все больше записей о его жизни.
Когда Гаусс вырос и стал замечен, у нас начали появляться письма о нем людьми, которые его знали, а также официальными отчетами разного рода. У нас также есть длинная биография его друга, написанная на основе бесед, которые они имели в конце жизни Гаусса. У нас есть его публикации, у нас очень много его писем к другим людям, и много материала он написал, но так и не опубликовал. И, наконец, у нас есть некрологи.

Ранняя жизнь и путь к математике

Отец Гаусса занимался различными делами, был рабочим, мастером строительной площадки и купеческим ассистентом. Его мать была умной, но едва грамотной, и посвятила всю себя Гауссу до самой своей смерти в возрасте 97 лет. Похоже, что Гаусс был замечен как одаренный ученик еще в школе, в одиннадцать лет, его отца убедили отправить его в местную академическую школу, вместо того, чтобы заставить его работать. В то время Герцог Брауншвейгский стремился модернизировать своё герцогство, и привлекал талантливых людей, которые бы помогли ему в этом. Когда Гауссу исполнилось пятнадцать, герцог привел его в коллегию Каролинум для получения им высшего образования, хотя к тому времени Гаусс уже самостоятельно изучил латынь и математику на уровне высшей школы. В возрасте восемнадцати лет он поступил в Геттингенский университет, а в двадцать один уже написал докторскую диссертацию.



Первоначально Гаусс собирался изучать филологию, приоритетный предмет в Германии того времени, но он также проводил обширные исследования по алгебраическому построению правильных многоугольников. В связи с тем, что вершины правильного многоугольника из N сторон задаются решением уравнения (что численно равно . Гаусс обнаружил, что при n = 17 уравнение факторизуется таким образом, что правильный 17-сторонний многоугольник может быть построен только по линейке и циркуля. Это был совершенно новый результат, греческие геометры не подозревали об этом, и открытие вызвало небольшую сенсацию - новости об этом даже были опубликованы в городской газете. Этот успех, который пришел, когда ему едва исполнилось девятнадцать, заставил его принять решение изучать математику.


Но то, что сделало его знаменитым, было два совершенно разных явления в 1801 году. Первым было издание его книги под названием «Арифметические рассуждения», которая полностью переписала теорию чисел и привела к тому, что она(теория чисел) стала, и до сих пор является, одним из центральных предметов математики. Она включает в себя теорию уравнений вида x ^ n - 1, являющейся одновременно очень оригинальной и в то же время легко воспринимаемой, а также гораздо более сложную теорию, называемую теорией квадратичной формой. Это уже привлекло внимание двух ведущих французских математиков, Джозефа Луи Лагранжа и Адриена Мари Лежандра, которые признали, что Гаусс ушел очень далеко за пределы всего того, что они делали.


Вторым важным событием было повторное открытие Гауссом первого известного астероида. Он был найден в 1800 году итальянским астрономом Джузеппе Пьяцци, который назвал его Церерой в честь римской богини земледелия. Он наблюдал ее в течение 41 ночи, прежде чем она исчезла за солнцем. Это было очень захватывающее открытие, и астрономы очень хотели знать, где он появится снова. Только Гаусс рассчитал это правильно, чего не сделал никто из профессионалов, и это сделало его имя как астронома, которым он и остался на многие годы вперед.

Поздняя жизнь и семья

Первая работа Гаусса была математиком в Геттингене, но после открытия Цереры, а затем и других астероидов он постепенно переключил свои интересы на астрономию, а в 1815 году стал директором Геттингенской обсерватории, и занимал эту должность почти до самой смерти. Он также оставался профессором математики в Геттингенском университете, но это, похоже, не требовало от него большого преподавания, а записи о его контактах с молодыми поколениями была довольно незначительной. Фактически, он, кажется, был отчужденной фигурой, более комфортной и общительной с астрономами, и немногими хорошими математиками в его жизни.


В 1820-х годах он руководил массированным исследованием северной Германии и южной Дании и в ходе этого переписывал теорию геометрии поверхностей или дифференциальную геометрию, как ее называют сегодня.


Гаусс женился дважды, в первый раз довольно счастливо, но когда его жена Джоанна умерла во время родов в 1809 году, он снова женился на Минне Вальдек, но этот брак оказался менее успешным; Она умерла в 1831 году. У него было трое сыновей, двое из которых эмигрировали в Соединенные Штаты, скорее всего, потому что их отношения с отцом были проблемными. В результате в Штатах существует активная группа людей, которые ведут свое происхождение от Гаусса. У него также было две дочери, по одной от каждого брака.

Величайший вклад в математику

Рассматривая вклад Гаусса в этой области, мы можем начать с метода наименьших квадратов в статистике, который он изобрел, чтобы понять данные Пьяцци и найти астероид Церера. Это был прорыв в усреднении большого количества наблюдений, все из которых были немного не точными, чтобы получить из них наиболее достоверную информацию. Что касается теории чисел, говорить об этом можно очень долго, но он сделал замечательные открытия о том, какие числа могут быть выражены квадратичными формами, которые являются выражениями вида . Вам может казаться, что это важно, но Гаусс превратил то, что было собранием разрозненных результатов в систематическую теорию, и показал, что многие простые и естественные гипотезы имеют доказательства, которые лежат в том, что похоже на другие разделы математики вообще. Некоторые приемы, которые он изобрел, оказались важными и в других областях математики, но Гаусс обнаружил их еще до того, как эти ветви были правильно изучены: теория групп - пример.


Его работа по уравнениям вида и, что более удивительно, по глубоким особенностям теории квадратичных форм, открыла использование комплексных чисел, например, для доказательства результатов о целых числах. Это говорит о том, что многое происходило под поверхностью предмета.


Позже, в 1820-х годах, он обнаружил, что существует концепция кривизны поверхности, которая является неотъемлемой частью поверхности. Это объясняет, почему некоторые поверхности не могут быть точно скопированы на другие, без преобразований, как мы не можем сделать точную карту Земли на листе бумаги. Это освободило изучение поверхностей от изучения твердых тел: у вас может быть яблочная кожура, без необходимости представления яблока под ней.



Поверхность с отрицательной кривизной, где сумма углов треугольника меньше, чем у треугольника на плоскости //source:Wikipedia


В 1840-х годах, независимо от английского математика Джорджа Грина, он изобрел предмет теории потенциала, который является огромным расширением исчисления функций нескольких переменных. Это правильная математика для изучения гравитации и электромагнетизма и с тех пор используется во многих областях прикладной математики.


И мы также должны помнить, что Гаусс открыл, но не опубликовал довольно много. Никто не знает, почему он так много сделал для себя, но одна теория состоит в том, что поток новых идей, которые он держал в голове был еще более захватывающим. Он убедил себя в том, что геометрия Евклида не обязательно истинна и что по крайней мере одна другая геометрия логически возможна. Слава этому открытию досталась двум другим математикам, Бойяю в Румынии-Венгрии и Лобачевскому в России, но только после их смерти - настолько это было спорно в то время. И он много работал над так называемыми эллиптическими функциями - вы можете рассматривать их как обобщения синусоидальных и косинусных функций тригонометрии, но, если более точно, они являются сложными функциями комплексной переменной, а Гаусс изобрел целую теорию из них. Десять лет спустя Абель и Якоби прославились тем, что сделали то же самое, не зная, что это уже сделал Гаусс.

Работа в других областях

После своего повторного открытия первого астероида, Гаусс много работал над поиском других астероидов и вычислением их орбит. Это была трудная работа в докомпьютерную эпоху, но он обратился к своим талантам, и он, похоже, почувствовал, что это работа позволила ему выплатить свой долг принцу и обществу, которое дало ему образование.


Кроме того, во время съемки в северной Германии он изобрел гелиотроп для точной съемки, а в 1840-х годах он помог создать и построить первый электрический телеграф. Если бы он также подумал об усилителях, он мог бы отметиться и в этом, так как без них сигналы не могли путешествовать очень далеко.

Прочное Наследие

Есть много причин, почему Карл Фридрих Гаусс по-прежнему так актуален сегодня. Прежде всего, теория чисел превратилась в огромный предмет с репутацией очень сложного. С тех пор некоторые из лучших математиков тяготеют к нему, и Гаусс дал им способ приблизиться к нему. Естественно, некоторые проблемы, которые он не смог решить, привлекли к себе внимание, поэтому вы можете сказать, что он создал целую область исследований. Оказывается, у этого также есть глубокие связи с теорией эллиптических функций.


Кроме того, его открытие внутренней концепции кривизны обогатило все изучение поверхностей и вдохновило на многие годы работы последующие поколения. Любой, кто изучает поверхности, от предприимчивых современных архитекторов до математиков, находится у него в долгу.


Внутренняя геометрия поверхностей простирается до идеи внутренней геометрии объектов более высокого порядка, таких как трехмерное пространство и четырехмерное пространство-время.


Общая теория относительности Эйнштейна и вся современная космология, в том числе изучение черных дыр, стали возможными благодаря тому, что Гаусс совершил этот прорыв. Идея неевклидовой геометрии, столь шокировавшая в свое время, заставляла людей осознавать, что может быть много видов строгой математики, некоторые из которых могут быть более точными или полезными - или просто интересными -, чем те, о которых мы знали.



Неевклидова геометрия //

Если бы люди могли жить несколько столетий, то в этом году известный немецкий математик Иоганн Карл Фридрих Гаусс отметил бы свой 242 год рождения. И кто знает, какие бы еще открытия он сделал… Но, к сожалению, так не бывает.

Родился Гаусс 30 апреля 1777 года в немецком городе Брауншвейге. Его родители были самыми обычными людьми. Его отец имел много специальностей, потому что для того, чтобы хоть как-то свести концы с концами ему приходилось работать и каменщиком, и садовником, и обустраивать фонтаны.

Фото: Scanned by User:Brunswyk, picture taken before 1914, Wikimedia (public domain)

Карл был совсем маленьким, когда окружающим стало ясно, что он гениален. В три года ребенок уже умел читать и считать. Однажды он даже сумел найти ошибку в расчетах отца. И на протяжении всей своей жизни большую часть вычислений он производил в уме.

В 7-летнем возрасте мальчика определили в школу. Там на него сразу обратили внимание, так как он лучше всех решал примеры. Еще во время занятий в школе он начал изучать классические труды по математике.

Его удивительные математические способности заметил и герцог Карл Вильгельм Фердинанд. Он выделил средства на обучение мальчика сначала в гимназии, а потом и в университете. В те времена ребенок из рабочей семьи вряд ли смог бы получить такое образование.

Фото: By Siegfried Detlev Bendixen (published in “Astronomische Nachrichten” 1828), via Wikimedia Commons (Public domain)

В 1798 году он закончил свои «Арифметические исследования». В то время ему был всего 21 год. В университете Гаусс не просто изучает различные дисциплины. Он доказал много значимых теорем и совершил важные открытия.

В 1799 году Гаусс защитил докторскую диссертацию, в которой впервые доказал основную теорему алгебры. Печать диссертации оплатил герцог, который все время наблюдал за деятельностью молодого гения.

Со временем Гаусс расширил сферу своих исследований. Он занялся астрономией. Поводом послужило то, что астроном Д. Пиацци открыл новую планету, и назвал ее Церерой. Но вскоре после обнаружения планета исчезла из поля зрения. Гаусс, пользуясь своим новым вычислительным методом, за несколько часов проделал сложнейшие вычисления, и точно указал место, где планета появится. И ее действительно там обнаружили. Это принесло Гауссу общеевропейскую славу. Он становится членом многих научных обществ.

Фото: Christian Albrecht Jensen, via Wikimedia Commons (Public domain)

В 1806 году он становится директором Геттингенской обсерватории. А в 1809 году был завершен труд «Теория движения небесных тел». В 1810 году он получил премию Парижской академии наук и золотую медаль Лондонского королевского общества.

Большое внимание уделял Гаусс печатанию своих трудов. Он никогда не публиковал те работы, которые, по его мнению, еще не завершены.

Умер гений математики 23 февраля 1855 года в Геттингене. По приказу короля Ганновера Георга V в его честь была отчеканена медаль, на которой выгравирован портрет Гаусса и его почетный титул – «Король математиков».

И сегодня мы пользуемся плодами гения короля математиков. Так, например, Иоганн Карл Фридрих Гаусс предложил алгоритм вычисления даты Пасхи. Как известно, дата Пасхи каждый год приходится на разные числа и этот алгоритм позволяет рассчитать даты на любой год в прошлом и в будущем.

Также благодаря значительному вкладу ученого в исследования электромагнетизма, в английском языке действия по размагничиванию морских судов, а также во время широкого распространения телевизоров и мониторов с кинескопами – размагничивание электронно-лучевой трубки назвали просто и емко: дегаусс.

Любители повозиться с электроникой также наверняка знакомы с интересным устройством, способным с помощью электромагнитного поля придавать мощное ускорение телам, известным как “пушка Гаусса”.