Как искать асимптоты. Сколько асимптот может быть у графика функции

Гиперболой называется геометрическое место точек, разность расстояний которых до двух данных точек, называемых фокусами, есть величина постоянная (эта постоянная должна быть положительной и меньше расстояния между фокусами).

Обозначим эту постоянную через 2а, расстояние между фокусами через и выберем оси координат так же, как и в § 3. Пусть - произвольная точка гиперболы.

По определению гиперболы

В правой части равенства нужно выбрать знак плюс, если и знак минус, если

Так как то последнее равенство можно записать в виде:

Это и есть уравнение гиперболы в выбранной системе координат.

Освобождаясь в этом уравнении от радикалов (как и в § 3), можно привести уравнение к простейшему виду.

Перенося первый радикал в правую часть равенства и возводя обе части в квадрат, после очевидных преобразований получим:

Возведя еще раз обе части равенства в квадрат, сделав приведение подобных членов и разделив на свободный член, получим:

Так как , то величина положительна. Обозначая ее через , т. е. полагая

получим каноническое уравнение гиперболы.

Исследуем форму гиперболы.

1) Симметрии гиперболы. Так как уравнение (3) содержит только квадраты текущих координат, то оси координат являются осями симметрии гиперболы (см. аналогичное утверждение для эллипса). Ось симметрии гиперболы, на которой располагаются фокусы, называется фокальной осью. Точка пересечения осей симметрии - центр симметрии - называется центром гиперболы. Для гиперболы, заданной уравнением (3), фокальная ось совпадает с осью Ох, а центром является начало координат.

2) Точки пересечения с осями симметрии. Найдем точки пересечения гиперболы с осями симметрии - вершины гиперболы. Полагая в ураннении найдем абсциссы точек пересечения гиперболы с осью

Следовательно, точки являются вершинами гиперболы (рис. 51); расстояние между ними равно 2а. Чтобы найти точки пересечения с осью Оу, положим в уравнении Получим для определения ординат этих точек уравнение

т. е. для у мы получили мнимые значения; это означает, что ось Оу не пересекает гиперболы.

В соответствии с этим ось симметрии, пересекающая гиперболу, называется действительной осью симметрии (фокальной осью), ось симметрии, которая не пересекает гиперболы, называется мнимой осью симметрии. Для гиперболы, заданной уравнением (3), действительной осью симметрии является ось , мнимой осью симметрии - ось Отрезок соединяющий вершины гиперболы, а также его длина 2а называются действительной осью гиперболы. Если на мнимой оси симметрии гиперболы отложить в обе стороны от ее центра О отрезки ОБ, и длиною b, то отрезок а также его длина называются мнимой осью гиперболы. Величины а и b называются соответственно действительной и мнимой полуосями гиперболы.

3) Форма гиперболы. При исследовании формы гиперболы достаточно рассматривать положительные значения х и у, потому что кривая симметрично расположена относительно осей координат.

Так как из уравнения (3) следует, что 1, то может изменяться от а до Когда увеличивается от а до то У тоже увеличивается от 0 до Кривая имеет форму, изображенную на рис. 51. Она располагается вне полосы, ограниченной прямыми и состоит из двух отдельных ветвей. Для любой точки М одной из этих ветвей (правая ветвь), для любой точки М другой ветви (левая ветвь).

4) Асимптоты гиперболы. Чтобы более ясно представить себе вид гиперболы, рассмотрим две прямые линии, тесно с нею связанные - так называемые асимптоты.

Предполагая х и у положительными, разрешим уравнение (3) гиперболы относительно ординаты у:

Сопоставим уравнение с уравнением прямой линии называя соответствующими две точки расположенные соответственно на этой прямой и на гиперболе и имеющие одну и ту же абсциссу (рис. 51). Очевидно, и разность Y - у ординат соответствующих точек выражает расстояние между ними, т. е.

Покажем, что при неограниченном возрастании расстояние MN, убивая, стремится к нулю. В самом деле,

После упрощения получим:

Из последней формулы мы усматриваем, что при неограниченном возрастании абсциссы расстояние MN убывает и стремится к нулю. Отсюда следует, что когда точка М, двигаясь по гиперболе в первом квадранте, удаляется в бесконечность, то ее расстояние до прямой уменьшается и стремится к нулю. То же обстоятельство будет иметь место при движении точки М по гиперболе в третьем квадранте (вследствие симметрии относительно начала координат О).

Наконец, вследствие симметрии гиперболы относительно оси Оу мы получим вторую прямую симметрично расположенную с прямой к которой также будет неограниченно приближаться точка М при движении по гиперболе и удалении в бесконечность (во втором и четвертом квадрантах).

Эти две прямые линии носят название асимптот гиперболы, они, как мы видели, имеют уравнения:

Очевидно, асимптоты гиперболы располагаются по диагоналям прямоугольника, одна сторона которого параллельна оси Ох и равна 2а, другая - параллельна оси Оу и равна а центр лежит в начале координат (см. рис. 51).

При вычерчивании гиперболы по ее уравнению рекомендуется предварительно построить ее асимптоты.

Равносторонняя гипербола. В случае гипербола называется равносторонней; ее уравнение получается из (3) и имеет вид:

Очевидно, угловые коэффициенты асимптот для равносторонней гиперболы будут Следовательно, асимптоты равносторонней гиперболы перпендикулярны между собой и делят пополам углы между ее осями симметрии.

Асимптоты графика функции

Асимптотой графика функции y = f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

На рисунке 3.10. приведены графические примеры вертикальной , горизонтальных и наклонной асимптот.

Нахождение асимптот графика основано на следующих трех теоремах.

Теорема о вертикальной асимптоте. Пусть функция у = f(х) определена в некоторой окрестности точки x 0 (исключая, возможно, саму эту точку) и хотя бы один из односторонних пределов функции равен бесконечности, т.е. Тогда прямая x = x 0 является вертикальной асимптотой графика функции у = f(х).

Очевидно, что прямая х = х 0 не может быть вертикальной асимптотой, если функция непрерывна в точке х 0 , так как в этом случае . Следовательно, вертикальные асимптоты следует искать в точках разрыва функции или на концах ее области определения.

Теорема о горизонтальной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существует конечный предел функции . Тогда прямая у = b есть горизонтальная асимптота графика функции.

Замечание. Если конечен только один из пределов , то функция имеет соответственно левостороннюю либо правостороннюю горизонтальную асимптоту.

В том случае, если , функция может иметь наклонную асимптоту.

Теорема о наклонной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существуют конечные пределы . Тогда прямая y = kx + b является наклонной асимптотой графика функции.

Без доказательства.

Наклонная асимптота, так же, как и горизонтальная, может быть правосторонней или левосторонней, если в базе соответствующих пределов стоит бесконечность определенного знака.

Исследование функций и построение их графиков обычно включает следующие этапы:

1. Найти область определения функции.

2. Исследовать функцию на четность-нечетность.

3. Найти вертикальные асимптоты, исследовав точки разрыва и поведение функции на границах области определения, если они конечны.

4. Найти горизонтальные или наклонные асимптоты, исследовав поведение функции в бесконечности.

Во многих случаях построение графика функции облегчается, если предварительно построить асимптоты кривой.

Определение 1. Асимптотами называются такие прямые , к которым сколь угодно близко приближается график функции, когда переменная стремится к плюс бесконечности или к минус бесконечности.

Определение 2. Прямая называется асимптотой графика функции, если расстояние от переменной точки М графика функции до этой прямой стремится к нулю при неограниченном удалении точки М от начала координат по какой-либо ветви графика функции.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты

Определение . Прямая x = a является вертикальной асимптотой графика функции , если точка x = a является точкой разрыва второго рода для этой функции.

Из определения следует, что прямая x = a является вертикальной асимптотой графика функции f (x ) , если выполняется хотя бы одно из условий:

При этом функция f (x ) может быть вообще не определена соответственно при x a и x a .

Замечание:

Пример 1. График функции y =lnx имеет вертикальную асимптоту x = 0 (т.е. совпадающую с осью Oy ) на границе области определения, так как предел функции при стремлении икса к нулю справа равен минус бесконечности:

(рис. сверху).

самостоятельно, а затем посмотреть решения

Пример 2. Найти асимптоты графика функции .

Пример 3. Найти асимптоты графика функции

Горизонтальные асимптоты

Если (предел функции при стремлении аргумента к плюс или минус бесконечности равен некоторому значению b ), то y = b горизонтальная асимптота кривой y = f (x ) (правая при иксе, стремящимся к плюс бесконечности, левая при иксе, стремящимся к минус бесконечности, и двусторонняя, если пределы при стремлении икса к плюс или минус бесконечности равны).

Пример 5. График функции

при a > 1 имеет левую горизонтальную асимпототу y = 0 (т.е. совпадающую с осью Ox ), так как предел функции при стремлении "икса" к минус бесконечности равен нулю:

Правой горизонтальной асимптоты у кривой нет, поскольку предел функции при стремлении "икса" к плюс бесконечности равен бесконечности:

Наклонные асимптоты

Вертикальные и горизонтальные асимптоты, которые мы рассмотрели выше, параллельны осям координат, поэтому для их построения нам требовалось лишь определённое число - точка на оси абсцисс или ординат, через которую проходит асимптота. Для наклонной асимптоты необходимо больше - угловой коэффициент k , который показывает угол наклона прямой, и свободный член b , который показывает, насколько прямая находится выше или ниже начала координат. Не успевшие забыть аналитическую геометрию, а из неё - уравнения прямой, заметят, что для наклонной асимптоты находят уравнение прямой с угловым коэффициентом . Существование наклонной асимптоты определяется следующей теоремой, на основании которой и находят названные только что коэффициенты.

Теорема. Для того, чтобы кривая y = f (x ) имела асимптоту y = kx + b , необходимо и достаточно, чтобы существовали конечные пределы k и b рассматриваемой функции при стремлении переменной x к плюс бесконечности и минус бесконечности:

(1)

(2)

Найденные таким образом числа k и b и являются коэффициентами наклонной асимптоты.

В первом случае (при стремлении икса к плюс бесконечности) получается правая наклонная асимптота, во втором (при стремлении икса к минус бесконечности) – левая. Правая наклонная асимптота изображена на рис. снизу.

При нахождении уравнения наклонной асимптоты необходимо учитывать стремление икса и к плюс бесконечности, и к минус бесконечности. У некоторых функций, например, у дробно-рациональных, эти пределы совпадают, однако у многих функций эти пределы различны а также может существовать только один из них.

При совпадении пределов при иксе, стремящемся к плюс бесконечности и к минус бесконечности прямая y = kx + b является двусторонней асимптотой кривой.

Если хотя бы один из пределов, определяющих асимптоту y = kx + b , не существует, то график функции не имеет наклонной асимптоты (но может иметь вертикальную).

Нетрудно видеть, что горизонтальная асимптота y = b является частным случаем наклонной y = kx + b при k = 0 .

Поэтому если в каком-либо направлении кривая имеет горизонтальную асимптоту, то в этом направлении нет наклонной, и наоборот.

Пример 6. Найти асимптоты графика функции

Решение. Функция определена на всей числовой прямой, кроме x = 0 , т.е.

Поэтому в точке разрыва x = 0 кривая может иметь вертикальную асимптоту. Действительно, предел функции при стремлении икса к нулю слева равен плюс бесконечности:

Следовательно, x = 0 – вертикальная асимптота графика данной функции.

Горизонтальной асимптоты график данной функции не имеет, так как предел функции при стремлении икса к плюс бесконечности равен плюс бесконечности:

Выясним наличие наклонной асимптоты:

Получили конечные пределы k = 2 и b = 0 . Прямая y = 2x является двусторонней наклонной асимптотой графика данной функции (рис. внутри примера).

Пример 7. Найти асимптоты графика функции

Решение. Функция имеет одну точку разрыва x = −1 . Вычислим односторонние пределы и определим вид разрыва:

Заключение: x = −1 - точка разрыва второго рода, поэтому прямая x = −1 является вертикальной асимптотой графика данной функции.

Ищем наклонные асимптоты. Так как данная функция - дробно-рациональная, пределы при и при будут совпадать. Таким образом, находим коэффициенты для подстановки в уравнение прямой - наклонной асимптоты:

Подставляя найденные коэффициенты в уравнение прямой с угловым коэффициентом, получаем уравнение наклонной асимптоты:

y = −3x + 5 .

На рисунке график функции обозначен бордовым цветом, а асимптоты - чёрным.

Пример 8. Найти асимптоты графика функции

Решение. Так как данная функция непрерывна, её график не имеет вертикальных асимптот. Ищем наклонные асимптоты:

.

Таким образом, график данной функции имеет асимптоту y = 0 при и не имеет асиптоты при .

Пример 9. Найти асимптоты графика функции

Решение. Сначала ищем вертикальные асимптоты. Для этого найдём область определения функции. Функция определена, когда выполняется неравенство и при этом . Знак переменной x совпадает со знаком . Поэтому рассмотрим эквивалентное неравенство . Из этого получаем область определения функции: . Вертикальная асимптота может быть только на границе области определения функции. Но x = 0 не может быть вертикальной асимптотой, так как функция определена при x = 0 .

Рассмотрим правосторонний предел при (левосторонний предел не существует):

.

Точка x = 2 - точка разрыва второго рода, поэтому прямая x = 2 - вертикальная асимптота графика данной функции.

Ищем наклонные асимптоты:

Итак, y = x + 1 - наклонная асимптота графика данной функции при . Ищем наклонную асимптоту при :

Итак, y = −x − 1 - наклонная асимптота при .

Пример 10. Найти асимптоты графика функции

Решение. Функция имеет область определения . Так как вертикальная асимптота графика этой функции может быть только на границе области определения, найдём односторонние пределы функции при .

Определение . Асимптотой графика функции называется прямая, обладающая тем свойством, что расстояние от точкиграфика функции до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат .

По способам их отыскания выделяют три вида асимптот: вертикальные , горизонтальные, наклонные.

Очевидно, горизонтальные являются частными случаями наклонных (при ).

Нахождение асимптот графика функции основано на следующих утверждениях.

Теорема 1 . Пусть функция определена хотя бы в некоторой полуокрестности точкии хотя бы один из ее односторонних пределов в этой точке бесконечен, т.е. равенили. Тогда прямаяявляется вертикальной асимптотой графика функции .

Таким образом, вертикальные асимптоты графика функции следует искать в точках разрыва функции или на концах ее области определения (если это конечные числа).

Теорема 2 . Пусть функция определена при значениях аргумента, достаточно больших по абсолютной величине, и существует конечный предел функции. Тогда прямаяесть горизонтальная асимптота графика функции.

Может случиться, что , а, причеми- конечные числа, тогда график имеет две различные горизонтальные асимптоты: левостороннюю и правостороннюю. Если же существует лишь один из конечных пределов или, то график имеет либо одну левостороннюю, либо одну правостороннюю горизонтальную асимптоту.

Теорема 3 . Пусть функция определена при значениях аргумента, достаточно больших по абсолютной величине, и существуют конечные пределыи. Тогда прямаяявляется наклонной асимптотой графика функции .

Заметим, что если хотя бы один из указанных пределов бесконечен, то наклонной асимптоты нет.

Наклонная асимптота так же, как и горизонтальная, может быть односторонней.

Пример . Найдите все асимптоты графика функции .

Решение .

Функция определена при . Найдем ее односторонние пределы в точках.

Так как и(два других односторонних предела можно уже не находить), то прямыеиявляются вертикальными асимптотами графика функции.

Вычислим

(применим правило Лопиталя) =.

Значит, прямая - горизонтальная асимптота.

Так как горизонтальная асимптота существует, то наклонные уже не ищем (их нет).

Ответ : график имеет две вертикальные асимптоты и одну горизонтальную.

Общие исследование функции y = f (x ).

    Область определения функции. Найти ее область определения D (f ) . Если это не слишком сложно, то полезно найти также область значений E (f ) . (Однако, во многих случаях, вопрос нахождения E (f ) откладывается до нахождения экстремумов функции.)

    Особые свойства функции. Выяснить общие свойства функции: четность, нечетность, периодичность и т.п. Не любая функция обладает такими свойствами, как четность либо нечетность. Функция заведомо не является ни четной, ни нечетной, если ее область определения несимметрична относительно точки 0 на оси Ox . Точно так же, у любой периодической функции область определения состоит либо из всей вещественной оси, либо из объединения периодически повторяющихся систем промежутков.

    Вертикальные асимптоты. Выяснить, как ведёт себя функция при приближении аргумента к граничным точкам области определенияD (f ), если такие граничные точки имеются. При этом могут обнаружиться вертикальные асимптоты. Если функция имеет такие точки разрыва, в которых она не определена, то эти точки тоже проверить на наличие вертикальных асимптот функции.

    Наклонные и горизонтальные асимптоты. Если область определения D (f ) вклоючает в себя лучи вида (a;+) или (−;b), то можно попытаться найти наклонные асимптоты (или горизонтальные асимптоты) при x+или x−соответственно, т.е. найти limxf(x).Наклонные асимптоты : y = kx + b, где k=limx+xf(x) и b=limx+(f(x)−x).Горизонтальны асимптоты : y = b, где limxf(x)=b.

    Нахождение точек пересечения графика с осями . Нахождение точки пересечения графика с осью Oy . Для этого нужно вычислить значение f (0). Найти также точки пересечения графика с осью Ox , для чего найти корни уравнения f (x ) = 0 (или убедиться в отсутствии корней). Уравнение часто удается решить лишь приближунно, но уже отделение корней помогает лучше уяснить строение графика. Далее, нужно определить знак функции на промежутках между корнями и точками разрыва.

    Нахождение точек пересечения графика с асимптотой. В некоторых случаях бывает нужно найти характерные точки графика, которые не были упомянуты в предыдущих пунктах. Например, если функция имеет наклонную асимптоту, то можно попытаться выяснить, нет ли точек пересечения графика с этой асимптотой.

    Нахождение интервалов выпуклости и вогнутости . Это делается с помощью исследования знака второй производной f(x). Найти точки перегиба на стыках интервалов выпуклости и вогнутости. Вычислить значение функции в точках перегиба. Если функция имеет другие точки непрерывности (кроме точек перегиба), в которых вторая производная равна 0 либо не существует, то в этих точках также полезно вычислить значение функции. Найдя f(x) , мы решаем неравенство f(x)0. На каждом из интервалов решения функция будет выпуклой вниз. Решая обратное неравенство f(x)0, мы находим интервалы, на которых функция выпукла вверх (то есть вогнута). Определяем точки перегиба как те точки, в которых функция меняет направление выпуклости (и непрерывна).

Асимптотой графика функции y = f(x) называется прямая, обладающая тем свойством, что расстояние от точки (х, f(x)) до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

На рисунке 3.10. приведены графические примеры вертикальной , горизонтальных и наклонной асимптот.

Нахождение асимптот графика основано на следующих трех теоремах.

Теорема о вертикальной асимптоте. Пусть функция у = f(х) определена в некоторой окрестности точки x 0 (исключая, возможно, саму эту точку) и хотя бы один из односторонних пределов функции равен бесконечности, т.е. Тогда прямая x = x 0 является вертикальной асимптотой графика функции у = f(х).

Очевидно, что прямая х = х 0 не может быть вертикальной асимптотой, если функция непрерывна в точке х 0 , так как в этом случае . Следовательно, вертикальные асимптоты следует искать в точках разрыва функции или на концах ее области определения.

Теорема о горизонтальной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существует конечный предел функции . Тогда прямая у = b есть горизонтальная асимптота графика функции.

Замечание. Если конечен только один из пределов , то функция имеет соответственно левостороннюю либо правостороннюю горизонтальную асимптоту.

В том случае, если , функция может иметь наклонную асимптоту.

Теорема о наклонной асимптоте. Пусть функция у = f(х) определена при достаточно больших х и существуют конечные пределы . Тогда прямая y = kx + b является наклонной асимптотой графика функции.

Без доказательства.

Наклонная асимптота, так же, как и горизонтальная, может быть правосторонней или левосторонней, если в базе соответствующих пределов стоит бесконечность определенного знака.

Исследование функций и построение их графиков обычно включает следующие этапы:

1. Найти область определения функции.

2. Исследовать функцию на четность-нечетность.

3. Найти вертикальные асимптоты, исследовав точки разрыва и поведение функции на границах области определения, если они конечны.

4. Найти горизонтальные или наклонные асимптоты, исследовав поведение функции в бесконечности.

5. Найти экстремумы и интервалы монотонности функции.

6. Найти интервалы выпуклости функции и точки перегиба.

7. Найти точки пересечения с осями координат и, возможно, некоторые дополнительные точки, уточняющие график.

Дифференциал функции

Можно доказать, что если функция имеет при некоторой базе предел, равный конечному числу, то ее можно представить в виде суммы этого числа и бесконечно малой величины при той же базе (и наоборот): .

Применим это теорему к дифференцируемой функции: .


Таким образом, приращение функции Dу состоит из двух слагаемых: 1) линейного относительно Dх, т.е. f `(x)Dх; 2) нелинейного относительно Dх, т.е. a(Dx)Dх. При этом, так как , это второе слагаемое представляет собой бесконечно малую более высокого порядка, чем Dх (при стремлении Dх к нулю оно стремится к нулю еще быстрее).

Дифференциалом функции называется главная, линейная относительно Dх часть приращения функции, равная произведению производной на приращение независимой переменной dy = f `(x)Dх.

Найдем дифференциал функции у = х.

Так как dy = f `(x)Dх = x`Dх = Dх, то dx = Dх, т.е. дифференциал независимой переменной равен приращению этой переменной.

Поэтому формулу для дифференциала функции можно записать в виде dy = f `(x)dх. Именно поэтому одно из обозначений производной представляет собой дробь dy/dх.

Геометрический смысл дифференциала проиллюстрирован
рисунком 3.11. Возьмем на графике функции y = f(x) произвольную точку М(х, у). Дадим аргументу х приращение Dх. Тогда функция y = f(x) получит приращение Dy = f(x + Dх) - f(x). Проведем касательную к графику функции в точке М, которая образует угол a с положительным направлением оси абсцисс, т.е. f `(x) = tg a. Из прямоугольного треугольника MKN
KN = MN*tg a = Dх*tg a = f `(x)Dх = dy.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции в данной точке, когда х получает приращение Dх.

Свойства дифференциала в основном аналогичны свойствам производной:

3. d(u ± v) = du ± dv.

4. d(uv) = v du + u dv.

5. d(u/v) = (v du - u dv)/v 2 .

Однако, существует важное свойство дифференциала функции, которым не обладает ее производная – это инвариантность формы дифференциала .

Из определения дифференциала для функции y = f(x) дифференциал dy = f `(x)dх. Если эта функция y является сложной, т.е. y = f(u), где u = j(х), то y = f и f `(x) = f `(u)*u`. Тогда dy = f `(u)*u`dх. Но для функции
u = j(х) дифференциал du = u`dх. Отсюда dy = f `(u)*du.

Сравнивая между собой равенства dy = f `(x)dх и dy = f `(u)*du, убедимся, что формула дифференциала не изменяется, если вместо функции от независимой переменной х рассматривать функцию от зависимой переменной u. Это свойство дифференциала и получило название инвариантности (т.е. неизменности) формы (или формулы) дифференциала.

Однако в этих двух формулах все же есть различие: в первой из них дифференциал независимой переменной равен приращению этой переменной, т.е. dx = Dx, а во в торой дифференциал функции du есть лишь линейная часть приращения этой функции Du и только при малых Dх du » Du.