Построение фигур с помощью циркуля. Построение изображений с помощью итерационных функций. Подготовка учащихся к восприятию нового материала




















Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Учебник: Геометрия, 7-9: учебник для общеобразовательных учреждений / (Л.С. Атанасян, В.Ф. Бутузов, С.Б. Кадомцев и др.) – 16 изд. – М.: Просвещение, 2011.

Цели урока:

  1. дать представление о новом классе задач на построение;
  2. рассмотреть наиболее простые задачи на построение;
  3. научить учащихся решать такие задачи.

Задачи:

Образовательный аспект:

      • дать представление о новом классе задач – построение геометрических с помощью циркуля и линейки без масштабных делений;
      • формировать практические умения работы;
      • расширить знания об истории геометрии.

Развивающий аспект:

  • развитие навыков самоконтроля;
  • формирование ИКТ – компетентности;
  • формирование логического мышления.

Воспитательный аспект:

  • воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов при изучении темы;
  • воспитание интереса к истории математики, как науки.

Тип урока: комбинированный.

Формы организации учебной деятельности: индивидуальная, коллективная.

Этапы урока:

  • подготовка к активной учебной деятельности;
  • применение знаний;
  • подведение итогов и рефлексия;
  • информация о домашнем задании.

Оборудование:

  • Учебное пособие, тетрадь, карандаш, авторучка, линейка, циркуль, раздаточный материал (КИМ);
  • Компьютер, с минимальными техническими требованиями: Windows 95/98/ME/NT/2000/XP, 7.
  • Муьтимедийный проектор, экран.

Ресурсы урока:

  • тестовые задания (КИМ) приложение 1 ;
  • презентация;
  • оценка степени усвоения материала приложение 3 .

План урока:

Этап урока Цель урока Время
1. Организационный момент(слайды 1-2) Сообщение темы урока;Постановка цели урока;Сообщение этапов урока. 2 мин.
2. Повторение. Проверка домашнего задания.(слайд 3) Проверка теоретических знаний учащихся по теме окружность при выполнении теста. 5 мин.
3. Подготовка учащихся к восприятию нового материала.(слайды 4-8) Актуализация опорных знаний 10 мин.
4. Изучение нового материала(слайды 9-19) Отработка навыков решения простейших задач на построение циркулем и линейкой, рассмотренных в учебнике. 25 мин.
5. Итог урока. Подведение итогов урока. 2 мин.
6. Домашнее задание.(слайд 20) Инструктаж по домашнему заданию. 1 мин.

ХОД УРОКА

1. Организационный момент:

Тема сегодняшнего урока - «Примеры задач на построение» (слайд 1).

Цель урока – рассмотреть наиболее простые задачи на построение, которые решаются только с помощью циркуля и линейки без делений; научиться решать их (слайд 2).

2. Повторение. Проверка домашнего задания:

Мы с вами изучили тему « Окружность» и сегодня проверим с помощью теста ваши знания. Выполнить задание теста (каждому раздаются КИМы с тестовым заданием). Для каждого вопроса выберите правильный вариант ответа. Самостоятельно оцените свои знания, подсчитав количество верных ответов. Если верных ответов 6 - оценка «5», если верных ответов 5 – оценка «4», если верных ответов 4 – оценка «3», меньшее количество верных ответов – оценка « 2».

(Верные ответы на слайде 3 презентации).

3. Подготовка учащихся к восприятию нового материала:

Вводная беседа учителя:

Мы уже имели дело с геометрическими построениями: проводили прямые, откладывали отрезки, равные данным, чертили углы, треугольники и другие фигуры с помощью различных инструментов. При построении отрезка заданной длины использовалась линейка с миллиметровыми делениями, а при построении угла заданной градусной меры – транспортир.

В домашней работе у вас была такая задача:

Начертите треугольник АВС такой, что АВ = 3,6 см, АС = 2,7 см, А = 48°. Какие инст рументы вы использовали для решения этой задачи?

Итак, мы использовали линейку с миллиметровыми делениями и транспортир. Но есть такие задачи, в которых бывает оговорено, с помощью каких инструментов нужно построить предлагаемую геометрическую фигуру (слайд 4-5).

Задача 1. С помощью циркуля и линейки без делений на данном луче от его начала отложить отрезок, равный данному. Чертёж на экране.

(Учащиеся предлагают варианты решений).

А теперь проверим ваше решение (см. слайд 6)

Таким образом, многие построения в геометрии могут быть выполнены с помощью только циркуля и линейки без делений (слайд 7).

В дальнейшем, говоря о задачах на построение, мы будем иметь в виду именно такие построения.

Задачи на построение циркулем и линейкой являются традиционным материалом, изучаемым в курсе планиметрии. Обычно эти задачи решаются по схеме, состоящей из четырех частей (посмотреть с. 95–96 учебника). Сначала рисуют (чертят) искомую фигуру и устанавливают связи между данными задачи и искомыми элементами. Эта часть решения называется анализом . Она дает возможность составить план решения задачи.

Затем по намеченному плану выполняется построение циркулем и линейкой.

После этого нужно доказать , что построенная фигура удовлетворяет условиям задачи.

И наконец, необходимо исследовать , при любых ли данных задача имеет решение, и если имеет, то сколько решений.

В тех случаях, когда задача достаточно простая, отдельные части, например анализ или исследование, можно опустить (слайд 8).

В VII классе мы решим простейшие задачи на построение циркулем и линейкой, в других классах будем решать более сложные задачи.

4. Изучение нового материала:

И так, наша задача – выполнить задачи на построение только с помощью двух инструментов: циркуля и линейки без масштабных делений.

Что можно делать с их помощью? Ясно, что линейка позволяет провести произвольную прямую, а также построить прямую, проходящую через две данные точки. С помощью циркуля можно провести окружность произвольного радиуса, а также окружность с центром в данной точке и радиусом, равным данному отрезку (слайд 9).

Выполняя эти несложные операции, мы сможем решить много интересных задач на построение (слайд 10):

  1. На данном луче от его начала отложить отрезок, равный данному.
  2. Отложить от данного луча угол, равный данному.
  3. Построить биссектрису данного неразвернутого угла.
  4. Построить прямую, проходящую через данную точку и перпендикулярную к прямой, на которой лежит данная точка.
  5. Построить середину данного отрезка.

Мы уже решили задачу № 1.

Теперь с помощью компьютера рассмотрим решение задачи № 2. Выполняйте соответствующие построения в тетради (слайды 11-12).

А теперь рассмотрим задачи № 3 – 5 (слайд 13-18).

(выполняются соответствующие построения и описания задач в тетради)

После выполнения работы, учитель обращает внимание учащихся на то, что такие задачи рассматривались в древности (слайд 19).

А теперь обратимся к истории геометрии. Древнегреческие математики достигли чрезвычайно большого искусства в геометрических построениях с помощью циркуля и линейки. Они доказали, что угол можно разделить и на четыре равных угла. Для этого нужно разделить его пополам, а затем построить биссектрису каждой половинки. А можно ли с помощью циркуля и линейки разделить угол на три равные части? Эта задача, получившая название задачи о трисекции угла, в течение многих веков привлекала внимание математиков. Однако она не поддавались их усилиям. Лишь в прошлом веке было доказано, что для произвольного угла такое построение невозможно.

Есть и другие задачи на построение, про которые известно, что они неразрешимы с помощью циркуля и линейки. Я предлагаю вам самостоятельно найти материал, содержащий информацию для ознакомления с этими задачами.

5. Подведение итогов урока:

Мы изучили много нового, узнали какие задачи можно решить только с помощью циркуля и линейки. У вас у каждого лежит лист с вопросами. Оцените свою работу на сегодняшнем уроке, выбрав один из предложенных вариантов ответа.

  1. Оцените степень сложности урока. Вам было на уроке:
    • легко;
    • обычно;
    • трудно
  2. Оцените степень вашего усвоения материала:
    • усвоил полностью, могу применить;
    • усвоил полностью, но затрудняюсь в применении;
    • усвоил частично;
    • не усвоил.

Собрать листочки для оценки степени усвоения материала сегодняшнего урока, чтобы на следующем уроке правильно организовать работу. Сообщаются оценки за урок, включая оценки за тест по теме « Окружность».

6. Домашнее задание:

  • ответить на вопросы 17–21 на стр. 50;
  • решить задачи №№ 153, 154 (слайд 20).

Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка Решение было уже дано на стр. 185. Далее, на стр. 186 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности с центром О. Вот описание этого построения. Радиусом проводим две дуги с центрами От точки О откладываем на этих дугах две такие дуги и что Затем находим точку пересечения дуги с центром Р и радиусом и дуги с центром и радиусом Наконец, взяв в качестве радиуса отрезок опишем дугу с центром Р или до пересечения с дугой точка пересечения и является искомой средней точкой дуги Доказательство предоставляем читателю в качестве упражнения.

Рис. 48. Пересечение окружности и прямой, не проходящей через центр

Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

1. Провести окружность, если заданы центр и радиус.

2. Найти точки пересечения двух окружностей.

3. Найти точки пересечения прямой и окружности.

4. Найти точку пересечения двух прямых.

Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

Обратимся к построению 3: найдем точки пересечения данной окружности С с прямой, проходящей через данные точки Проведем дуги с центрами и радиусами, соответственно равными и кроме точки О, они пересекутся в точке Р. Затем построим точку обратную точке Р относительно окружности С (см. построение, описанное на стр. 186). Наконец, проведем окружность с центром и радиусом (она непременно пересечется с С): его точки пересечения с окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек находится на одинаковых расстояниях от (что касается точек то аналогичное их свойство сразу вытекает из построения). Действительно, Достаточно сослаться на то обстоятельство, что точка, обратная точке отстоит от точек на расстояние, равное радиусу окружности С (см. стр. 184). Стоит отметить, что окружность, проходящая через точки является обратной прямой в инверсии относительно круга С, так как эта окружность и прямая пересекаются

Рис. 49. Пересечение окружности и прямой, проходящей через центр

с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.)

Указанное построение невыполнимо только в том случае, если прямая проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 188, как получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках Метод проведения окружности, обратной прямой, соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками (рис. 50).

Рис. 50. Пересечение двух прямых

Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым и Эти окружности пересекаются в точке О и еще в одной точке Точка X, обратная точке и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым и следовательно, точка X, обратная должна лежать одновременно и на и на

Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

Пусть А - произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки что

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №34 с углубленным изучением отдельных предметов

МАН, физико-математическая секция

«Геометрические построения с помощью циркуля и линейки»

Выполнила: ученица 7 «А» класса

Батищева Виктория

Руководитель: Колтовская В.В.

Воронеж, 2013

3. Построение угла равного данному.

Проведем произвольную окружность с центром в вершине А данного угла (рис.3). Пусть В и С - точки пересечения окружности со сторонами угла. Радиусом АВ проведем окружность с центром в точке О-начальной точке данной полупрямой. Точку пересечения этой окружности с данной полупрямой обозначим С 1 . Опишем окружность с центром С 1 и Рис.3

радиусом ВС. Точка В 1 пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла.

6. Построение перпендикулярных прямых.

Проводим окружность с произвольным радиусом r с центром в точке O рис.6. Окружность пересекает прямую в точках A и B. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей. Точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.

Искомая прямая проходит через точки С и О.


Рис.6

Известные задачи

1. Задача Брахмагупты

Построить вписанный четырехугольник по четырем его сторонам. Одно из решений использует окружность Аполлония. Решим задачу Аполлония, используя аналогию между трехокружником и треугольником. Как мы находим окружность, вписанную в треугольник: строим точку пересечения биссектрис, опускаем из нее перпендикуляры на стороны треугольника, основания перпендикуляров (точки пересечения перпендикуляра со стороной, на которую он опущен) и дают нам три точки, лежащие на искомой окружности. Проводим окружность через эти три точки – решение готово. Точно также мы поступим с задачей Аполлония.

2. Задача Аполлония

Построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна, но была восстановлена в 1600 г. Франсуа Виетом, «галльским Аполлонием», как его называли современники.

Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.


Построение правильных многоугольников.

П

равильный
(или равносторонний ) треугольник - это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны правильного треугольника равны между собой, а все углы равны 60°. Чтобы построить равносторонний треугольник нужно разделить окружность на 3 равные части. Для этого необходимо провести дугу радиусом R этой окружности лишь из одного конца диаметра, получим первое и второе деление. Третье деление находится на противоположном конце диаметра. Соединив эти точки, получим равносторонний треугольник.

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения через деление окружности на 6 частей. Используем равенство сторон правильного шестиугольника радиусу описанной окружности. Из противоположных концов одного из диаметров окружности описываем дуги радиусом R. Точки пересечения этих дуг с заданной окружностью разделят её на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник.

Построение правильного пятиугольника.

П
равильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.

Вот один из методов построения правильного пятиугольника в заданной окружности:

    Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O . (Это зелёная окружность на схеме справа).

    Выберите на окружности точку A , которая будет одной из вершин пятиугольника. Постройте прямую через O и A .

    Постройте прямую перпендикулярно прямой OA , проходящую через точку O . Обозначьте одно её пересечение с окружностью, как точку B .

    Постройте точку C посередине между O и B .

    C через точку A . Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D .

    Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F .

    Проведите окружность с центром в E через точку A G .

    Проведите окружность с центром в F через точку A . Обозначьте её другое пересечение с первоначальной окружностью как точку H .

    Постройте правильный пятиугольник AEGHF .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

    Трисекция угла - разбить произвольный угол на три равные части.

Иначе говоря, необходимо построить трисектрисы угла - лучи, делящие угол на три равные части. П. Л. Ванцель доказал в 1837 году, что задача разрешима только тогда, когда например, трисекция осуществима для углов α = 360°/n при условии, что целое число n не делится на 3. Тем не менее, в прессе время от времени публикуются (неверные) способы осуществления трисекции угла циркулем и линейкой.

    Удвоение куба - классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба.

В современных обозначениях, задача сводится к решению уравнения . Всё сводится к проблеме построения отрезка длиной . П. Ванцель доказал в 1837 году, что эта задача не может быть решена с помощью циркуля и линейки.

    Квадратура круга - задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу .

Как известно, с помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π. Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π, которая была доказана в 1882 году Линдеманом.

Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис .

Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

А ЗНАЕТЕ ЛИ ВЫ, ЧТО...

(из истории геометрических построений)


Когда-то в построение правильных многоугольников вкладывали мистический смысл.

Так, пифагорейцы, последователи религиозно-философского учения, основанного Пифагором, и жившие в древней Греции (V I-I V вв. до н. э.), приняли в качестве знака своего союза звездчатый многоугольник, образованный диагоналями правильного пятиугольника.

Правила строгого геометрического построения некоторых правильных многоугольников изложены в книге «Начала» древнегреческого математика Евклида, жившего в III в. до н.э. Для выполнения этих построений Евклид предлагал пользоваться только линейкой и циркулем, который в то время был без шарнирного устройства соединения ножек (такое ограничение в инструментах было непреложным требованием античной математики).

Правильные многоугольники нашли широкое применение и в античной астрономии. Если Евклида построение этих фигур интересовало с точки зрения математики, то для древнегреческого астронома Клавдия Птолемея (около 90 - 160 г. н. э.) оно оказалось необходимым как вспомогательное средство при решении астрономических задач. Так, в 1-й книге «Альмагесты» вся десятая глава посвящена построению правильных пяти- и десятиугольников.

Однако помимо чисто научных трудов, построение правильных многоугольников было неотъемлемой частью книг для строителей, ремесленников, художников. Умение изображать эти фигуры издавна требовалось и в архитектуре, и в ювелирном деле, и в изобразительном искусстве.

В «Десяти книгах о зодчестве» римского архитектора Витрувия (жившего примерно в 63 -14 гг. до н. э.) говорится, что городские стены должны иметь в плане вид правильного многоугольника, а башни крепости «следует делать круглыми или многоугольными, ибо четырехугольник скорее разрушается осадными орудиями».

Планировка городов очень интересовала Витрувия, который считал, что нужно спланировать улицы так, чтобы вдоль них не дули основные ветры. Предполагалось, что таких ветров восемь и что они дуют в определенных направлениях.

В эпоху Возрождения построение правильных многоугольников, и в частности пятиугольника, представляло не простую математическую игру, а являлось необходимой предпосылкой для построения крепостей.

Правильный шестиугольник явился предметом специального исследования великого немецкого астронома и математика Иоганна Кеплера (1571-1630), о котором он рассказывает в своей книге «Новогодний подарок, или о шестиугольных снежинках». Рассуждал о причинах того, почему снежинки имеют шестиугольную форму, он отмечает, в частности, следующее: «...плоскость можно покрыть без зазоров лишь следующими фигурами: равносторонними треугольниками, квадратами и правильными шестиугольниками. Среди этих фигур правильный шестиугольник покрывает наибольшую площадь»

0дним из наиболее известных ученых, занимавшихся геометрическими построениями, был великий немецкий художник и математик Альбрехт Дюрер (1471 -1528), который посвятил им значительную часть своей книги «Руководства...». Он предложил правила построения правильных многоугольников с 3. 4, 5... 16-ю сторонами. Методы деления окружности, предложенные Дюрером, не универсальны, в каждом конкретном случае используется индивидуальный прием.

Дюрер применял методы построения правильных многоугольников в художественной практике, например, при создании разного рода орнаментов и узоров для паркета. Наброски таких узоров были сделаны им во время поездки в Нидерланды, где паркетные полы встречались во многих домах.

Дюрер составлял орнаменты из правильных многоугольников, которые соединены в кольца (кольца из шести равносторонних треугольников, четырех четырехугольников, трех или шести шестиугольников, четырнадцати семиугольников, четырех восьмиугольников).

Заключение

Итак, геометрические построения - это способ решения задачи, при котором ответ получают графическим путем. Построения выполняют чертежными инструментами при максимальной точности и аккуратности работы, так как от этого зависит правильность решения.

Благодаря этой работе я познакомилась с историей возникновения циркуля, подробнее познакомилась с правилами выполнения геометрических построений, получила новые знания и применила их на практике.
Решение задач на построение циркулем и линейкой – полезное времяпровождение, позволяющее по-новому посмотреть на известные свойства геометрических фигур и их элементов. В данной работе рассмотрены наиболее актуальные задачи, связанные с геометрическими построениями с помощью циркуля и линейки. Рассмотрены основные задачи и даны их решения. Приведенные задачи имеют значительный практический интерес, закрепляют полученные знания по геометрии и могут использоваться для практических работ.
Таким образом, цель работы достигнута, поставленные задачи выполнены.

Энциклопедичный YouTube

    1 / 5

    Построения циркулем и линейкой, часть 1.

    1 Простейшие построения циркулем и линейкой

    Science show. Выпуск 19. Циркуль и линейка

    Геометрия - Построение правильного треугольника

    Геометрия - Построение восьмиугольника

    Субтитры

Примеры

Задача на бисекцию . С помощью циркуля и линейки разбить данный отрезок AB на две равные части. Одно из решений показано на рисунке:

  • Циркулем проводим окружности с центром в точках A и B радиусом AB .
  • Находим точки пересечения P и Q двух построенных окружностей (дуг).
  • По линейке проводим отрезок или линию, проходящую через точки P и Q .
  • Находим искомую середину отрезка AB - точку пересечения AB и PQ .

Формальное определение

В задачах на построение рассматриваются множество следующих объектов: все точки плоскости, все прямые плоскости и все окружности плоскости. В условиях задачи изначально задается (считается построенными) некоторое множество объектов. К множеству построенных объектов разрешается добавлять (строить):

  1. произвольную точку;
  2. произвольную точку на заданной прямой;
  3. произвольную точку на заданной окружности;
  4. точку пересечения двух заданных прямых;
  5. точки пересечения/касания заданной прямой и заданной окружности;
  6. точки пересечения/касания двух заданных окружностей;
  7. произвольную прямую, проходящую через заданную точку
  8. прямую, проходящую через две заданные точки;
  9. произвольную окружность с центром в заданной точке
  10. произвольную окружность с радиусом, равным расстоянию между двумя заданными точками.
  11. окружность с центром в заданной точке и с радиусом, равным расстоянию между двумя заданными точками.

Требуется с помощью конечного количества этих операций построить другое множество объектов, находящееся в заданном соотношении с исходным множеством.

Решение задачи на построение содержит в себе три существенные части:

  1. Описание способа построения заданного множества.
  2. Доказательство того, что множество, построенное описанным способом, действительно находится в заданном соотношении с исходным множеством. Обычно доказательство построения производится как обычное доказательство теоремы, опирающееся на аксиомы и другие доказанные теоремы.
  3. Анализ описанного способа построения на предмет его применимости к разным вариантам начальных условий, а также на предмет единственности или неединственности решения, получаемого описанным способом.

Известные задачи

Другая известная и неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис . Интересно, что эта задача остаётся неразрешимой даже при наличии инструмента, выполняющего трисекцию угла .

Допустимые отрезки для построения с помощью циркуля и линейки

С помощью этих инструментов возможно построение отрезка, который по длине:

Для построения отрезка с длиной численно равной произведению, частному и квадратному корню из длин заданных отрезков необходимо задание на плоскости построения единичного отрезка (то есть отрезка длины 1). Извлечение корней из отрезков с иными натуральными степенями, не являющимися степенью числа 2, невозможны с помощью циркуля и линейки. Так, например, невозможно при помощи циркуля и линейки из единичного отрезка построить отрезок длиной . Из этого факта, в частности, следует неразрешимость задачи об удвоении куба.

Возможные и невозможные построения

С формальной точки зрения, решение любой задачи на построение сводится к графическому решению некоторого алгебраического уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому можно сказать, что задача на построение сводится к отысканию действительных корней некоторого алгебраического уравнения.

Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

Исходя из возможных построений отрезков возможны следующие построения:

  • Построение решений линейных уравнений .
  • Построение решений уравнений, сводящихся к решениям квадратных уравнений .

Иначе говоря, возможно строить лишь отрезки, равные арифметическим выражениям с использованием квадратного корня из исходных чисел (заданных длин отрезков).

Важно отметить, что существенно, что решение должно выражаться при помощи квадратных корней, а не радикалов произвольной степени. Если даже алгебраическое уравнение имеет решение в радикалах, то из этого не следует возможность построения циркулем и линейкой отрезка, равного его решению. Простейшее такое уравнение: x 3 − 2 = 0 , {\displaystyle x^{3}-2=0,} связанное со знаменитой задачей на удвоение куба, сводящаяся к этому кубическому уравнению. Как было сказано выше, решение этого уравнения ( 2 3 {\displaystyle {\sqrt[{3}]{2}}} ) невозможно построить циркулем и линейкой.

Возможность построить правильный 17-угольник следует из выражения для косинуса центрального угла его стороны:

cos ⁡ (2 π 17) = − 1 16 + 1 16 17 + 1 16 34 − 2 17 + {\displaystyle \cos {\left({\frac {2\pi }{17}}\right)}=-{\frac {1}{16}}\;+\;{\frac {1}{16}}{\sqrt {17}}\;+\;{\frac {1}{16}}{\sqrt {34-2{\sqrt {17}}}}\;+\;} + 1 8 17 + 3 17 − 34 − 2 17 − 2 34 + 2 17 , {\displaystyle +{\frac {1}{8}}{\sqrt {17+3{\sqrt {17}}-{\sqrt {34-2{\sqrt {17}}}}-2{\sqrt {34+2{\sqrt {17}}}}}},} что, в свою очередь, следует из возможности сведения уравнения вида x F n − 1 = 0 , {\displaystyle x^{F_{n}}-1=0,} где F n {\displaystyle F_{n}} - любое простое число Ферма , с помощью замены переменной к квадратному уравнению.

Вариации и обобщения

  • Построения с помощью одного циркуля. По теореме Мора - Маскерони с помощью одного циркуля можно построить любую фигуру, которую можно построить циркулем и линейкой. При этом прямая считается построенной, если на ней заданы две точки.
  • Построения с помощью одной линейки. Очевидно, что с помощью одной линейки можно проводить только проективно-инвариантные построения. В частности,
    • невозможно даже разбить отрезок на две равные части,
    • также невозможно найти центр данной окружности.
Однако,
  • при наличии на плоскости заранее проведённой окружности с отмеченным центром с одной линейкой можно провести те же построения, что и циркулем и линейкой (

Команда предназначена для последовательного построения кривых и прямых линий так, что конец предыдущего объекта является началом следующего объекта. Построение геометрии этим способом возможно также из меню Инструменты → Геометрия

Параметр Описание
С помощью этой кнопки завершается создание цепочки геометрических элементов. При этом производится замыкание контура из этих элементов путем соединения последнего геометрического элемента с первой точкой цепочки. Эта кнопка активна в том случае, когда возможно осуществить замыкание цепочки. Например, цепочка не получится, если последовательно построены только 2 прямых отрезка - их можно замкнуть только 3 прямым отрезком - получится треугольник (минимальная фигура). Но в случае кривой Безье - достаточно 2 точек, чтобы с помощью третьей точки замкнуть контур
Отрезок Команды создания прямых отрезков
С помощью этой кнопки производится построение произвольного прямого отрезка, параллельного выбранной прямой линии. Эта линия может находиться вне строящейся цепочки
С помощью этой кнопки производится построение прямого отрезка, перпендикулярного выбранной прямой линии. Эта линия может находиться вне строящейся цепочки
С помощью этой кнопки производится построение прямого отрезка, касательного выбранной кривой. Эта кривая должна находиться вне строящейся цепочки. В некоторых случаях программа может предложить несколько вариантов построения касательных отрезков. Для выбора одного из них или всех вместе необходимо использовать кнопки Предыдущий или Следующий объект или, указывая мышкой на каждый нужный вариант, нажимать левую кнопку мыши. Если задать конкретную длину отрезка в поле Длина , то появляется возможность строить касательный отрезок, вторая точка которого может не лежать на выбранной кривой
Дуга Команды создания дуг
С помощью этой кнопки производится построение произвольной дуги путем последовательного указания трех точек в графическом окне или на панели параметров
С помощью этой кнопки производится построение дуги, касательной предыдущему элементу в цепочке
Лекальная кривая Команды создания кривых
С помощью этой кнопки производится построение сплайна по ряду точек
Сплайн по полюсам С помощью этой кнопки производится построение сплайна по ряду ограничительных точек. При этом можно задавать Вес точки и Порядок Вес определяет «силу притяжения» кривой к точке кривой. Чем больше вес, тем ближе к точке кривая. По сути это параметр кривизны кривой (чем больше кривизна кривой, тем меньше радиус изгиба, и наоборот). Параметр Порядок определяет минимальное количество точек, по которому будет построена кривая. Минимальный порядок 3 - позволяет построить кривую по трем точкам

Построение геометрии с помощью инструмента Линия

Команда Линия предназначена для последовательного построения прямых линий и дуг так, что конец предыдущего объекта является началом следующего объекта. Панель параметров этой команды содержит вырожденное меню команды . Построение геометрии этим способом возможно также из меню Инструменты → Геометрия → Линия . Панель параметров этой кнопки содержит следующие команды:

Параметр Описание
Отрезок С помощью этой кнопки производится построение произвольного прямого отрезка
Дуга С помощью этой кнопки производится построение дуги, касательной к предыдущему элементу в цепочке. При этом направление создания дуги изменяется перемещением курсора в противоположную сторону от начальной точки дуги
С помощью этой кнопки завершается создание цепочки геометрических элементов. После этого программа переходит в режим ожидания ввода новой цепочки
Если эта кнопка нажата, то производится построение цепочки элементов. Если эта кнопка отжата, то производится построение отдельных элементов (линий или дуг)

Построение кривых и ломаной линии

Построение кривых возможно из менюИнструменты → Геометрия → Кривые . Построение ломаной линии возможно из менюИнструменты → Геометрия → Ломаная . Кривая Безье представляет собой частный случай NURBS кривой. Все эти команды находятся на панели инструментов Геометрия. Способы их построения перечислены ниже:

Кнопка Сплайн предназначена для построения одноименной кривой по ряду точек. Представленные на панели параметров кнопки Разомкнутый объект и Замкнутый объект позволяют строить соответственно незамкнутую и замкнутую кривую, когда первая и последняя точки соединяются. Замкнутую кривую всегда можно переключить в незамкнутую кривую и наоборот.

У сплайна возможно расширенное редактирование характерных точек. Для этого предназначена кнопка Редактировать точки на панели параметров. Также эта команда автоматически вызывается при двойном щелчке левой кнопки мыши на уже построенной кривой. При этом точки кривой дополняются касательными отрезками, которые проходят через характерные точки кривой.

Кривую можно разбить на части с помощью команд меню Разбить → Кривую и Разбить → Кривую на N частей . Первая команда позволяет разбить выбранную кривую на 2 части в указанной точке. Вторая кривая позволяет разбить кривую на несколько равных частей. Для этого необходимо выбрать количество частей на панели параметров и указать кривую, которую необходимо разбить.

Передвигая мышкой характерные точки (квадратные точки) и концы касательных отрезков (круглые точки), можно управлять формой кривой. Можно передвигать эти точки с использование стрелок клавиатуры, для этого необходимо навести курсор на требуемую точку и нажать клавишу Enter. После этого станет возможным передвижение с помощью стрелок с шагом, кратным текущему шагу курсора. Завершить перемещение можно также по нажатию клавиши Enter. Возможно 3 варианта перемещения характерных точек:

  • Перемещение в любом направлении - если курсор при наведении на точку будет выглядеть в виде четырех диагональных стрелок
  • Перемещение в ограниченном диапазоне направлений - если курсор при наведении на точку будет выглядеть в виде четырех ортогональных стрелок
  • Перемещение курсора приводит к вращению геометрии - если курсор при наведении на точку будет выглядеть в виде вращающихся стрелок.

Точки кривой можно привязывать к другим объектам и другим точкам кривой с помощью глобальных и локальных привязок. Включение необходимой локальной привязки в процессе перемещения характерной точки возможно при нажатии правой кнопки мыши (или сочетании клавиш SHIFT+F10) и выборе привязки из выпадающего подменю Привязка .

Кнопка Сплайн по полюсам предназначена для построения кривой – сплайна по ряду точек. Для этого типа кривой можно задавать Вес с точки и Порядок кривой на панели параметров. Параметр Вес определяет «силу притяжения» кривой к точке кривой. Чем больше вес, тем ближе к точке кривая. По сути это параметр кривизны кривой (чем больше кривизна кривой, тем меньше радиус изгиба и наоборот). Параметр Порядок определяет минимальное количество точек, по которому будет построена кривая. Минимальный порядок 3 - позволяет построить кривую по трем точкам. Сплайн по полюсам напоминает обычный сплайн в режиме редактирования точек. Если конечные точки смежных касательных (тангенциальных) отрезков в к сплайне соединить, то получится подобие сплайна по полюсам. Сплайн по по полюсам изначально более «гладкий», чем обычный сплайн, в связи с тем, что в сплайн по полюсам обеспечивается непрерывность по кривизне.

Если построить 2 сплайна по полюcам, то можно соединить их концы так, чтобы обеспечивалась непрерывность («гладкость») в точке перехода.

Для этого необходимо построить вспомогательную линию в точке перехода с необходимым наклоном (например, касательную вспомогательную прямую в этой точке перехода) и расположить вторые точки от точки перехода на этой вспомогательной прямой. Теперь при перемещении 3 точки и выше (если смотреть от точки перехода) на любой из этих кривых будет сохраняться условие непрерывности кривой в точке перехода.

Добавить характерную точку можно с помощью простого щелчка левой кнопки мыши на нужном участке кривой.

Удалить характерную точку можно с помощью клавиши DEL при выборе требуемой точки. При этом кривая изменит форму.

Интерфейс работы со сплайнами по полюсам аналогичен интерфейсу работы с обычными сплайнами. На панели параметров можно также создать как Разомкнутый объект так и Замкнутый объект. И с помощью кнопки Редактировать точки можно также исправить форму кривой, двигая характерные точки. Точно так же, как и с кривыми Безье работают привязки, совершается перемещение точек и разбиение кривой на части.

Кнопка Ломаная предназначена для построения серии связанных между собой прямых линий. Ломаная линия отличается от обычной последовательности прямых отрезков тем, что сдвиг любого элемента не приводит к разрыву линии.

Интерфейс работы с ломаными линиями аналогичен интерфейсу работы с кривыми. На панели параметров можно также создать как Разомкнутый объект , так и Замкнутый объект . И с помощью кнопки Редактировать точки можно также исправить форму ломаной линии, двигая характерные точки. Точно так же, как и с кривыми, работают привязки и совершается перемещение точек. Отличительной особенностью ломаной линии является то, что ее можно разбить на отдельные элементы с помощью команды меню Редактор → Разрушить . После этого отдельные элементы ломаной линии можно перемещать или удалять, без воздействия на другие элементы.