Вакуум физика определение. Информация о вакуумных системах и компонентах

Слово «вакуум» происходит от латинского «vacuum», что означает «пустота». Это такое состояние пространства, когда в нем находится очень мало молекул газа, значительно меньше, чем в обычном воздухе. Даже разреженный газ с давлением меньше атмосферного уже называют вакуумом. Глубокий вакуум царит в космическом пространстве, да и на Земле его научились создавать искусственно.

Искусственный вакуум создается с помощью специального оборудования. Это так называемые вакуумные насосы различных конструкций, которыми откачивают воздух из какой-либо емкости. Однако абсолютного вакуума достичь невозможно. Ведь даже металлические стенки сосуда имеют в себе некоторое количество газов, которые выделяются из них. Кроме того, любое вещество хоть немного, но пропускает сквозь себя молекулы газа извне. Поэтому невозможно удалить их полностью, всегда некоторое количество остается, но оно так мало, что термин «вакуум» вполне применим.

Интересно, что если поместить предмет в вакуумную камеру, чтобы он не касался стенок, то его температура, казалось бы, должна сохраняться все время одной и одинаковой. На самом деле этого не происходит – даже в очень глубоком вакууме все предметы излучают так называемые тепловые фотоны. Обмениваясь ими со стенками емкости, наш предмет со временем сравняет свою температуру с ними, хотя времени это займет гораздо больше, чем в воздушном пространстве.

Этот принцип положен в основу некоторых привычных нам приспособлений. Например, все видели стеклянную колбу в термосе. Между ее стенками создан вакуум, а сами стенки окрашены серебристой краской, хорошо отражающей те только свет, но и тепловое излучение. Налитая в термос жидкость долго не остывает или не нагревается потому, что отделена от обычной среды вакуумом. За счет серебристого покрытия колбы, ее наружная стенка еще меньше реагирует на тепло оставшегося в ней воздуха.

Еще один всем знакомый предмет с вакуумом – обычная электрическая лампочка. За счет отсутствия кислорода в ней электрическая спираль служит гораздо дольше, ведь она не окисляется. Стоит вакууму нарушиться – спираль перегорает практически мгновенно. Многие это наблюдали, купив лампочку с плохо запаянным цоколем или поврежденную. Видимо, от качества вакуума зависит и долговечность лампочки – нормальный срок ее работы должен быть не менее пяти лет.

Считается, что в космическом пространстве нет ничего – только пустота. Но это неверно. Даже в межзвездном пространстве находится газ – в основном водород. Его плотность очень низка – примерно одна молекула на кубический сантиметр. Однако существует еще множество других частиц – фотонов, электронов и т.д. Все это создает некоторое количество вещества, пусть и очень разреженного, но все-таки оно есть.

Еще один интересный факт – если вакуумом считать газ с давлением меньше атмосферного, то некоторые звезды состоят из него. Да, эти огромные светящиеся газовые шары состоят практически из пустоты! Известно, что звезды – сверхгиганты имеют маленькую плотность. Это особенно касается красных сверхгигантов, которые завершают свой жизненный путь. Чем больше звезда – тем меньше плотность. Лишь в ядре плотность вещества позволяет поддерживать термоядерную реакцию, но размер его – мелочь по сравнению со всей звездой.

Вакуум (англ. vacuum , нем. Vakuum , от лат. vacuus - пустой) - многозначный физический термин, который в зависимости от контекста может означать:

  • Разреженный состояние газа. Такой вакуум называют частичным . Различают высокий, средний и низкий вакуум. Высоким называется вакуум, при котором длина свободного пробега молекул газа превышает линейные размеры сосуда, в котором содержится газ; если свободный пробег молекул газа и линейные размеры сосуда соизмеримыми величинами, то вакуум называется средним , а если свободный пробег молекул газа меньше линейные размеры сосуда - низким .
На практике качество вакуума измеряется в остаточном давлении. Высокий вакуум соответствует давлению, низкому за 10 -3 Торр. Максимально высокий вакуум, которого можно достичь в современных лабораториях, имеет давление 10 -13 торр.
  • Идеализированная абстакция, пространство, в котором нет совсем вещества. Такой вакуум называют идеальным.
  • Физическая система без частиц и квантов поля. Это самый низкий состояние квантовой системы, при котором ее энергия минимальна, называемый вакуумным состоянием. Согласно принципу неопределенности для такого вакуума определенная часть физических величин не может быть точно определенной.

Частичный вакуум с изобретением ламп накаливания и вакуумных ламп в начале XX века стал широко использоваться в промышленности. В вакууме проводится значительное количество физических экспериментов: отсутствие воздуха или атмосферы другого состава дозовляе уменьшить нежелательные посторонние воздействия на объект исследования. Интерес к изучению вакуума увеличился после выхода человека в космос. Околоземное и межпланетное пространство является очень разреженным газом, который можно характеризовать как вакуум.

Исследования вакуума начались с создания «торричеллиевои пустоты» (ru) итальянским физиком Эванджелиста Торричелли в середине 17 века.

Технический вакуум

Техническим называют частичный вакуум, образовавшийся в земных условиях. Совокупность инструментов, используемых пр этом называют вакуумной техникой. Главное место среди орудий вакуумной техники занимают насосы различной конструкции и принципа действия.

Основным инструментом для создания низкого вакуума является объемный насос. Принцип его действия заключается в циклическом увеличении и уменьшении объема газа в сосуде. Во время фазы увеличения объема, всасывания, газ в сосуде расширяется, заполняя дополнительный объем, который затем отсекается и выбрасывается.

Создание высокого и сверхвысокого вакуума является сложной технической проблемой. Когда молекул газа в вакуумной камере мало, возникают проблемы, связанные с загрязнением камеры молекулами масла, недостаточной плотности прокладок, дегазации стенок сосуда, тому подобное.

Для получения высокого вакуума используют диффузионные насосы. Принцип действия насосов этого типа основывается на том, что молекулы газа не диффундируют против течения. Поэтому диффузионные насосы используют струю для вытягивания молекул газа из вакуумной камеры.

Насосы-ловители позволяют достичь еще более высокого вакуума. Их действие может базироваться на различных физических и химических принципах: криогенные насосы используют низкую температуру, для конденсации газа в сосуде, в химических насосах молекулы газа связываются химическими веществами или адсорбируют на поверхности, в ионизационных насосах газ в вакуумной камере йонизуеться и извлекается с помощью сильных электрических полей.

Реальные вакуумные установки состоят из комбинации насосов различного типа, каждый из которых выполняет свою задачу и работает при разной степени разрежения газа в вакуумной камере. К инструментам вакуумной техники относятся также различные измерительные приборы, используемые для определения качества созданного вакуума.

Физический вакуум

Физическим вакуумом называют идеализированное понятие пространства, в котором нет частиц. Экспериментально такого состояния достичь невозможно, отдельные атомы и ионы есть даже в чрезвычайно разреженной межгалактическом пространстве. Абстрактное понятие физического вакуума используется, например, для определения скорости света, как скорости распространения электромагнитного взаимодействия в пустоте без частиц.

Хотя может показаться, что пустое пространство является простейшей физической системой, в действительности это не так. Развитие квантовой механики показал, что вакуум является сложным физическим объектом, свойства которого еще не совсем понятны.

Во-первых, вакуум, пожалуй, заполненный нулевыми колебаниями электромагнитного поля. квантами электромагнитного поля являются фотоны, частицы принадлежащих к бозонов. Волновые функции бозонов в низком состоянии не равны нулю. При квантовании поля бозонов, они рассматриваются как гармонические осцилляторы. В основном состоянии бозоны имеют не только отличную от нуля волновую функцию, но и ненулевую энергию. Так, вакуум заполнен нулевыми колебаниями различных мод электромагнитного и других бозонних полей со всеми возможными волновыми векторами, направлениями прозповсюдження и поляризациями. Каждая из этих мод имеет энергию, где - сводная постоянная Планка, а? - циклическая частота. Это порождает проблему энергии вакуума, поскольку таких мод бесконечно много, и суммарная энергия вакуума должна быть бесконечной. Однако, физические эксперименты, в частности Лэмб смещение и эффект Казимира свидетельствуют о том, что нулевые колебания электромагнитного поля - реальность, и, что они могут взаимодействовать с другими физическими объектами.

Другая идея, которая еще больше осложняет понимание вакуума, связанная с уравнением Дирака, описывающее релятивистскую квантовую частицу, в частности электрон.Уравнение Дирака для свободного электрона имеет четыре развязки, два из них с отрицательной энергией. Поль Дирак показал, что с помощью операции зарядового сопряжения эти развязки можно трактовать, как развязки с положительной энергией, но для частицы с противоположным, положительным, зарядом, т.е. античастицы электрона. Такая античастица была обнаружена экспериментально и получила название позитрона.

Трактовка Дирака похоже на терии полупроводников, Частицы, электроны, аналогичные электронам проводимости, тогда как античастицы, позитроны, аналогичные дырками.В основном состоянии, соответствующем вакуума, все энергетические состояния с отрицательной энергией, заполнены, а позитрон соответствует незаполненном состоянию.

При рассмотрении взаимодействий между частицами в квантовой электродинамике часто необходимо учитывать возможность образования из вакуума виртуальных электрон-позитронных пар.

Физический вакуум. Пустота – ткань Вселенной.

Аннотация

Физический вакуум является особым видом материи, претендующим на первооснову мира.

Авторы исследуют физический вакуум как целостный физический объект, которому не свойственна множественность и разложимость на части. Такой континуальный физический объект является наиболее фундаментальным видом физической реальности. Свойство континуальности придает ему наибольшую общность и не накладывает ограничений, свойственных множеству других объектов и систем. Континуальный вакуум расширяет класс известных физических объектов. Континуальный вакуум имеет наибольшую энтропию среди всех известных физических объектов и систем и является физическим объектом принципиально недоступным для приборного наблюдения. Приведены 3D-анимации вакуумных эффектов.

1. Научные и философские проблемы вакуума

Физический вакуум стал предметом изучения физики благодаря усилиям известных ученых: П.Дирака, Р.Фейнмана, Дж.Уилера, У.Лэмба, де Ситтера, Г.Казимира, Г.И.Наана,

Я.Б.Зельдовича, А.М.Мостепаненко В.М.Мостепаненко и др. Понимание физического вакуума как не пустого пространства сформировалось в квантовой теории поля. Теоретические исследования указывают на реальность существования в физическом вакууме энергии нулевых колебаний.

Поэтому внимание исследователей привлекают новые физические эффекты и феномены в надежде на то, что они позволят подступиться к океану вакуумной энергии. Достижению реальных результатов, в плане практического использования энергии физического вакуума, мешает непонимание его природы. Загадка природы физического вакуума остается одной из нерешенных проблем фундаментальной физики.

Ученые считают физический вакуум особым состоянием материи, претендующим на первооснову мира. В ряде философских концепций в качестве основы мира рассматривается категория "ничто". Ничто не считается пустотой, а рассматривается как "содержательная пустота".

При этом подразумевается, что "ничто", лишенное конкретных свойств и ограничений, присущих обычным физическим объектам, должно обладать особой общностью и фундаментальностью и,

таким образом, охватывать все многообразие физических объектов и явлений. Таким образом, "ничто" причисляется к ключевым категориям и отвергается принцип ex nigilo nigil fit (из “ничто” ничего не возникает). Философы древнего Востока утверждали, что наиболее фундаментальная реальность мира не может иметь никаких конкретных характеристик и, тем самым, напоминает небытие. Очень похожими признаками современные ученые наделяют физический вакуум. При этом, физический вакуум, будучи относительным небытием и "содержательной пустотой",

является вовсе не самым бедным, а наоборот, самым содержательным, самым "богатым" видом физической реальности. Считается, что физический вакуум, являясь потенциальным бытием,

способен порождать все множество объектов и явлений наблюдаемого мира. Таким образом,

физический вакуум претендует на статус онтологического базиса материи. Несмотря на то, что актуально физический вакуум не состоит из каких-либо частиц или полей, он содержит все потенциально. Поэтому, вследствие наибольшей общности, он может выступать в качестве онтологической основы всего многообразия объектов и явлений в мире. В этом смысле, пустота – самая содержательная и наиболее фундаментальная сущность. Такое понимание физического вакуума заставляет признать реальность существования не только в теориях, но и в Природе и

"ничто" и "нечто". Последнее существует как проявленное бытие – в виде наблюдаемого вещественно-полевого мира, а "ничто" существует как не проявленное бытие – в виде физического вакуума. В этом смысле, не проявленное бытие следует рассматривать как самостоятельную физическую сущность, обладающую наибольшей фундаментальностью.

2. Проявление свойств физического вакуума в экспериментах

Физический вакуум непосредственно не наблюдается, но проявление его свойств регистрируется в экспериментах. В физике известен ряд вакуумных эффектов. К ним относятся:

рождение электронно-позитронной пары, эффект Лэмба-Ризерфорда, эффект Казимира, эффект Унру. В результате поляризации вакуума электрическое поле заряженной частицы отличается от кулоновского. Это приводит к лембовскому сдвигу энергетических уровней и к появлению аномального магнитного момента у частиц. При воздействии фотона на физический вакуум в поле ядра возникают вещественные частицы – электрон и позитрон.

В 1965 году В.Л. Гинзбург и С.И. Сыроватский указали на то, что ускоренный протон нестабилен и должен распадаться на нейтрон, позитрон и нейтрино. В ускоренной системе должен присутствовать тепловой фон различных частиц. Наличие этого фона известно как эффект Унру и связано с различным состоянием вакуума в покоящейся и ускоренной системах отсчета.

Эффект Казимира состоит в возникновении силы, сближающей две пластины, находящиеся в вакууме. Эффект Казимира указывает на возможность извлечения механической энергии из вакуума. На рис.1 схематически показан эффект Казимира в физическом вакууме. 3D-анимация этого процесса показана на рис.1

Рис.1. Проявление силы Казимира в физическом вакууме.

Перечисленные физические эффекты указывают на то, что вакуум не является пустотой, а

выступает в качестве реального физического объекта.

3. Модели физического вакуума

В современной физике предпринимаются попытки представить физический вакуум различными моделями. Многие ученые, начиная с П. Дирака, пытались найти модельные представления, адекватные физическому вакууму. В настоящее время известны: вакуум Дирака,

вакуум Уилера, вакуум де Ситтера, вакуум квантовой теории поля, вакуум Тэрнера-Вилчека и др.

Вакуум Дирака является одной из первых моделей. В ней физический вакуум представлен "морем"

заряженных частиц, находящихся в самом низком энергетическом состоянии. На рис.2 показана модель электронно-позитронного физического вакуума - “море Дирака”. 3D-анимация процессов в море Дирака показана на рис. 2

Рис.2. Модель физического вакуума - “море Дирака”.

Вакуум Уилера состоит из геометрических ячеек планковских размеров. Согласно Уилеру все свойства реального мира и сам реальный мир есть не что иное, как проявление геометрии пространства.

Вакуум де Ситтера представлен совокупностью частиц с целочисленным спином,

находящихся в низшем энергетическом состоянии. В модели де Ситтера физический вакуум обладает свойством, совершенно не присущим любому состоянию вещества. Уравнение состояния такого вакуума, связывающее давление Р и плотность энергии W, имеет необычный вид: .

Причина появления такого экзотического уравнения состояния связана с представлением вакуума многокомпонентной средой, в которой для компенсации сопротивления среды движущимся частицам введено понятие отрицательного давления. На рис.3 условно показана модель вакуума де Ситтера.

Рис.3. Модель физического вакуума де Ситтера.

Вакуум квантовой теории поля содержит в виртуальном состоянии всевозможные частицы.

Эти частицы лишь на короткое время могут появляться в реальном мире и снова переходят в виртуальное состояние. На рис.4 показана модель вакуума квантовой теории поля. 3D-анимация процесса возникновения и исчезновения виртуальных частиц показана на рис 4.

Рис.4. Модель физического вакуума квантовой теории поля.

Вакуум Тэрнера-Вилчека представлен двумя проявлениями – "истинным" вакуумом и

"ложным" вакуумом. То, что в физике считается самым низким энергетическим состоянием, есть

"ложный" вакуум, а истинно нулевое состояние находится ниже по энергетической лестнице. При этом считается, что "ложный" вакуум может переходить в состояние "истинного" вакуума.

Вакуум Герловина представлен несколькими проявлениями. И.Л. Герловин разработал специфический вариант "Единой теории поля". Он назвал свой вариант данной теории – "Теория фундаментального поля". Теория фундаментального поля основана на физико-математической модели "расслоенных пространств". Физический вакуум, согласно теории фундаментального поля представляет собой смесь нескольких видов вакуума в соответствии с видом образующих их

"голых" элементарных частиц. Каждый вид вакуума состоит из не проявляющих себя в

"лабораторном" подпространстве элементарных частиц вакуума, каждая из которых состоит из фермион-антифермионной пары "голых" элементарных частиц. В теории фундаментального поля существует девять видов вакуума. Заметно проявляют себя в физическом мире только два вида вакуума, имеющие наибольшую плотность – протон-антипротонный вакуум и электрон-

позитронный вакуум. По мнению Герловина основные свойства "лабораторного" физического вакуума, например, диэлектрическая проницаемость, определяются свойствами протон-

антипротонного вакуума.

Фитонная модель вакуума предполагает, что невозмущенный вакуум состоит из вложенных друг в друга фитонов, имеющих противоположные спины. По мнению авторов этой модели в среднем такая среда нейтральна, обладает нулевой энергией и нулевым спином.

Физический вакуум как модель квантовой жидкости состоит из фотонных частиц (ф – частиц). В этой модели фотонные частицы расположены в определенном порядке, наподобие кристаллической решетки.

Физический вакуум может быть также представлен как сверхтекучая жидкость, состоящая из фермион-антифермионных пар с ненулевой массой покоя.

Существующие модели физического вакуума весьма противоречивы. Однако большинство предложенных концепций и модельных представлений физического вакуума несостоятельны как в теоретическом, так и в экспериментальном планах. Это относится и к "морю Дирака", и к модели

"расслоенных пространств", и к другим моделям. Причина состоит в том, что в сравнении со всеми другими видами физической реальности физический вакуум имеет ряд парадоксальных свойств, что ставит его в ряд объектов, трудно поддающихся моделированию. Обилие различных модельных представлений вакуума указывает на то, что до сих пор отсутствует модель, адекватная реальному физическому вакууму.

4. Проблемы создания теории физического вакуума

Современная физика стоит на пороге перехода от концептуальных представлений о физическом вакууме к теории физического вакуума. Современные концепции физического вакуума имеют существенный недостаток – они отягощены геометрическим подходом. Проблема,

с одной стороны, состоит в том, чтобы не представлять физический вакуум геометрическим объектом, а с другой стороны, оставляя физический вакуум в статусе физической сущности, не подходить к его изучению с механистических позиций. Создание непротиворечивой теории физического вакуума требует прорывных идей, далеко выходящих за рамки традиционных подходов.

Реальность такова, что в рамках квантовой физики, породившей саму концепцию физического вакуума, теория вакуума не состоялась. Не удалось создать теорию вакуума и в рамках классических представлений. Становится все более очевидным, что "зона жизни" будущей теории физического вакуума должна находиться за пределами квантовой физики и, скорее всего,

ей предшествовать. По всей видимости, квантовая теория должна быть следствием и продолжением теории физического вакуума, коль скоро физическому вакууму отводится роль наиболее фундаментальной физической сущности, роль основы мира. Будущая теория физического вакуума должна удовлетворять принципу соответствия. В таком случае теория физического вакуума должна естественным образом переходить в квантовую теорию. Для построения теории физического вакуума важно получить ответ на вопрос: "какие константы относятся к физическому вакууму?" Если считать, что физический вакуум является онтологической основой мира, то его константы должны выступать в качестве онтологического базиса всех физических констант. Эта проблема исследовалась и были предложены пять первичных суперконстант, от которых происходят фундаментальные физические и космологические константы. Эти константы могут быть отнесены к физическому вакууму. На рис. 5 приведены пять универсальных физических суперконстант и их значения.

Рис. 5. Универсальные физические суперконстанты.

В настоящее время преобладает концепция, в рамках которой считается, что вещество происходит из физического вакуума и свойства вещества проистекают из свойств физического вакуума. Такой концепции придерживались П. Дирак, Ф.Хойл, Я.Б.Зельдович, Э.Трайон и др. Я.Б.

Зельдович исследовал даже более амбициозную задачу – происхождение всей Вселенной из вакуума. Он показал, что твердо установленные законы Природы при этом не нарушаются. Строго выполняются закон сохранения электрического заряда и закон сохранения энергии. Единственный закон, который не выполняется при рождении Вселенной из вакуума – это закон сохранения барионного заряда. Остается непонятным, куда подевалось огромное количество антивещества,

которое в равном количестве с веществом должно было появиться из физического вакуума.

5. Несостоятельность концепции дискретного вакуума

Идеи о том, что какие-либо дискретные частицы могут составлять основу физического вакуума, оказались несостоятельными как в теоретическом плане, так и в практическом приложении. Подобные идеи вступают в противоречие с фундаментальными принципами физики,

Как считал П. Дирак, физический вакуум порождает дискретное вещество. Это значит, что физический вакуум должен генетически предшествовать веществу. Чтобы понять суть физического вакуума, надо оторваться от стереотипного понимания "состоять из…". Мы привыкли, что наша атмосфера - это газ, состоящий из молекул. Долгое время в науке господствовало понятие "эфир". И сейчас можно встретить сторонников концепции светоносного эфира или существования в физическом вакууме газа из гипотетических частиц. Все попытки найти место "эфиру" или иным дискретным объектам в концепциях вакуума или в моделях

вакуума не привели к пониманию сущности физического вакуума. Статус такого вида физической реальности, каким являются дискретные частицы, всегда вторичен. Вновь и вновь будет возникать задача выяснения происхождения дискретных частиц и, соответственно, поиска более фундаментальной сущности.

Можно сделать вывод, что концепции дискретного вакуума принципиально несостоятельны. Весь путь развития физики показал, что никакая частица не может претендовать на фундаментальность и выступать в качестве основы мироздания. Дискретность свойственна веществу. Вещество не имеет первичного статуса, оно происходит из физического вакуума,

поэтому оно принципиально не может выступать в качестве фундаментальной основы мира.

Поэтому физический вакуум не должен иметь признаков, свойственных веществу. Он не должен быть дискретным. Он является антиподом вещества. Его основной признак – континуальность.

Осознание системной организации вещественного мира и материального единства мира,

является величайшим достижением человеческой мысли. К этой системе мира добавилась еще одна подсистема – физический вакуум. Однако существующая система структурных уровней организации мира пока выглядит незавершенной. Она не ориентирована на генетическую взаимосвязь уровней и на естественное развитие. Она не завершена снизу и сверху.

Незавершенность снизу предполагает выяснение величайшей тайны природы - механизма происхождения дискретного вещества из континуального вакуума. Незавершенность сверху требует раскрытия не меньшей тайны - связи физики микромира и физики Вселенной.

Современные физические теории, в попытках найти фундаментальные физические объекты, демонстрируют тенденцию перехода от частиц – трехмерных объектов, к объектам нового вида, имеющим меньшую размерность. Например, в теории суперструн размерность объектов-суперструн намного меньше размерности пространства. Фундаментальные струны понимаются как 1-мерные объекты. Они бесконечно тонкие, а длина их порядка 10-33 см.

Считается, что у физических объектов, имеющих меньшую размерность, больше оснований претендовать на фундаментальный статус. В тенденции перехода к фундаментальным объектам,

имеющим меньшую размерность, перспективным, на наш взгляд, является подход В. Жвирблиса.

Жвирблис утверждает, что физический вакуум – непрерывная материальная среда. По аналогии с

"нитью Пеано", бесконечно плотно заполняющей двумерное пространство, условно разбитое на квадраты, автор предлагает новую модель физического вакуума – "нить Жвирблиса", бесконечно плотно заполняющую трехмерное пространство, условно разбитое на тетраэдры.

На рис.6 показана модель вакуума Жвирблиса.

Рис. 6. Нить Жвирблиса.

По нашему мнению, это большой прорыв в понимании сущности физического вакуума как фундаментальной основы мира. Жвирблис, в отличие от других ученых, в качестве модели физического вакуума рассматривает не многокомпонентную среду, а одномерный математический объект – "нить Жвирблиса". В отличие от всех известных моделей, в его модели дискретности и множественности отведено самое минимальное место – используется одномерный математический объект. В пределе понимается, что при сверхплотном заполнении пространства среда становится непрерывной.

На рисунке 7 показана тенденция перехода к объектам, имеющим меньшую размерность. Мы считаем, что в этой тенденции поиска наиболее фундаментального объекта недоставало решающего шага – перехода к нуль-мерному объекту. Эта проблема исследовалась и было предложено, что физический вакуум, в отличие от традиционного понимания, представлен как нуль-мерный физический объект.

Рис.7. Тенденция в физических теориях: переход от трехмерных объектов к нуль-мерному объекту.

Фундаментальные объекты в теории суперструн имеют планковские размеры. Тем не менее, пока нет убедительных доводов, что "планкеоны" или "суперструны" составляют основу мира. Нет оснований считать, что не существует объектов, имеющих размеры меньше планковских. В этом контексте следует заметить, что планковские естественные единицы не являются единственными. В физике известны константы Джорджа Стони, образованные комбинацией констант G, c, e. Они имеют меньшие значения по сравнению с планковскими

единицами, и вполне могут выступать конкурентами планковским единицам. Единицы Планка и единицы Стони исследовались и были предложены новые системы естественных единиц,

относящиеся к глубинным уровням организации материи в микромире ниже планковского уровня.

Новые системы естественных единиц образованы гравитационной константой G, зарядом электрона e, скоростью света c, постоянной Ридберга R∞, постоянной Хаббла H0.

На рис.8, для сравнения, приведены значения планковских естественных единиц, естественных единиц Джорджа Стони и новых естественных единиц.

Рис. 8. Естественные единицы М. Планка, естественные единицы Дж. Стони и новые естественные единицы.

Подход, в рамках которого считается, что физический вакуум существует в виде непрерывной среды является многообещающим. При таком подходе к физическому вакууму находит объяснение его ненаблюдаемость. Не следует связывать ненаблюдаемость физического вакуума с несовершенством приборов и способов исследования. Физический вакуум – принципиально ненаблюдаемая среда – это прямое следствие его непрерывности. Наблюдаемыми являются только вторичные проявления физического вакуума – поле и вещество. Для континуального физического объекта нельзя указать никаких других свойств, кроме свойства непрерывности. К континуальному объекту неприменимы никакие меры, это антипод всему дискретному.

Физика, на примере проблемы физического вакуума, сталкивается с коллизией непрерывности и дискретности, с которой столкнулась математика в теории множеств. Попытка разрешить противоречие непрерывности и дискретности в математике была предпринята Кантором (континуум-гипотеза Кантора). Эту гипотезу не удалось доказать ни ее автору, ни другим выдающимся математикам. В настоящее время причина неудач выяснена. В соответствии с выводами П.Коэна: сама идея множественной, дискретной структуры континуума является ложной . Распространяя этот результат на континуальный вакуум можно утверждать: "идея множественной или дискретной структуры физического вакуума является ложной".

С учетом парадоксальных свойств и признаков можно констатировать, что континуальный вакуум является новым видом физической реальности, с которым физика еще не сталкивалась.

6. Критерии фундаментальности

В связи с тем, что физический вакуум претендует на фундаментальный статус, более того,

даже на онтологический базис материи, он должен обладать наибольшей общностью и ему не должны быть присущи частные признаки, характерные для множества наблюдаемых объектов и явлений. Известно, что присвоение объекту какого-либо дополнительного признака уменьшает универсальность этого объекта. Так, например, ножницы – универсальное понятие. Добавление какого-либо признака сужает круг охватываемых этим понятием объектов (ножницы бытовые,

слесарные, кровельные, дисковые, гильотинные, портновские и т.п.). Таким образом, приходим к выводу, что на онтологический статус может претендовать такая сущность, которая лишена каких-

либо признаков, мер, структуры и которую принципиально нельзя моделировать, поскольку любое моделирование предусматривает использование дискретных объектов и наделение моделируемого объекта конкретными признаками и мерами. Физическая сущность, претендующая на фундаментальный статус не должна быть составной, поскольку составная сущность имеет вторичный статус по отношению к ее составляющим.

Таким образом, требование фундаментальности и первичности для физического объекта влечет за собой выполнение следующих основных условий:

1. Не быть составным.

2. Иметь наименьшее количество признаков, свойств и характеристик.

3. Иметь наибольшую общность для всего многообразия объектов и явлений.

4. Быть потенциально всем, а актуально ничем.

5. Не иметь никаких мер.

Не быть составным – это означает не содержать в себе ничего, кроме самого себя, т.е. быть целостным объектом. Относительно второго условия идеальным должно быть требование - совсем не иметь признаков. Иметь наибольшую общность для всего многообразия объектов и явлений – это означает не обладать признаками частных, конкретных объектов, поскольку любая конкретизация сужает общность. Быть потенциально всем, а актуально ничем – это означает оставаться ненаблюдаемым и одновременно быть основой всему сущему. Не иметь никаких мер – это означает быть континуальным объектом.

Эти пять условий первичности и фундаментальности чрезвычайно созвучны с мировоззрением философов древности, в частности, представителей школы Платона. Они считали,

что мир возник из фундаментальной сущности – из изначального Хаоса. По их воззрениям Хаос породил все существующие структуры Космоса. При этом Хаосом они считали такое состояние системы, которое остается на конечном этапе по мере некоего условного устранения всех возможностей проявления ее свойств и признаков.

При выборе вакуумного насоса (или компрессора) и оценке его пригодности для использования в той или иной технологии оперируют двумя главными характеристиками:

  • ДАВЛЕНИЕ
  • ПРОИЗВОДИТЕЛЬНОСТЬ

Вакуумный насос или компрессор, который в поиске у потенциального пользователя, должен, прежде всего, обеспечить требуемый уровень давления. Затем ставится задача получить это давление за определенный промежуток времени. Быстрота получения заданного значения давления определяется производительностью (pumping speed) вакуумного насоса. При этом газовые компрессоры нагнетают газы и формируют давления выше атмосферного. Вакуумные насосы генерируют давления ниже атмосферного, т.е. создают разрежение.

В этой статье речь пойдет о низком давлении , т.е. о ВАКУУМЕ, как об основной технической характеристике всех вакуумных насосов. Создание или генерирование устройством вакуума - это динамический процесс понижения атмосферного давления в объеме и во времени. При поисках и выборе вакуумного насоса по уровню вакуума обычно говорят о двух характеристиках вакуумного насоса, связанных с давлением:

  • предельное остаточное давление (или предельный вакуум, ultimate pressure)
  • рабочее давление (или рабочий вакуум, working pressure)

Предельное остаточное давление - это самое хорошее (высокое) значение вакуума, которое позволяет достигнуть конструкция этого вакуумного насоса. Важно понимать, что когда вакуумный насос достигает этого предельного значения вакуума, производительность откачки газов становится равной нулю, т.е. откачка прекращается, и в дальнейшем при работе насоса это значение предельного давления будет поддерживаться как некое достигнутое равновесное состояние системы «насос-откачиваемый объём».

Как правило, значение предельного остаточного давления достигается лишь при работе вакуумного насоса в режиме «сам на себя», т.е. при заглушенном входном патрубке. Это объясняется довольно просто: при подключении к насосу технологических объемов (емкости, трубопроводы, стыки, камеры и др.) всегда существуют течи (негерметичности) или явления газовой десорбции, которые не позволяют достичь в откачиваемом объеме максимальное значение вакуума, который способен создать сам насос.

Рабочее давление - это заданное значение вакуума, которое требуется обеспечить и поддерживать вакуумным насосом в той или иной технологии или техпроцессе.

При выборе вакуумного насоса его предельное остаточное давление должно быть немного лучше чем рабочее. Это как бы обеспечивает некий «запас прочности», т.е. гарантию того, что требуемое в техпроцессе давление будет достигнуто с помощью именно этого вакуумного насоса.

2. Давление газов в объёме. Атмосферное давление. Понятие «ВАКУУМ».

Давление газов в замкнутом объёме - это суммарное усилие, оказываемое ударами (толчками) постоянно движущихся молекул газов в стенки объёма, в результате их постоянного броуновского движения и сталкивания друг с другом и с твёрдыми стенками сосуда.

Основная единица измерения давления в системе СИ - это «Па» (Паскаль):

1 Па = 1 Н / м 2 = 0,01 мбар [ 1 ]

Другие общепринятые единицы измерения давления и их соотношения приведены в Таблице 1:

Таблица 1
Единица измерения давления бар мбар мм.
рт. ст.
м
вод. ст.
Па кПа МПа атм. ат. кгс/см 2 psi
Бар (bar) 1 1000 750 10,2 100 000 100 0,1 0,9869 1,02 1,02 14,5

Атмосферное давление - это давление, которое оказывает масса воздушного столба, как смесь газов, простирающихся на высоту более 1000 км от уровня поверхности земли и океана. При этом надо понимать, что чем выше от поверхности моря находится точка измерения этого атмосферного давления, тем атмосфера менее сконцентрирована, тем смесь газов реже (как бы их масса разбавляется в огромном увеличивающемся с высотой объёме) и, как следствие, давление этой смеси газов падает с подъёмом на высоту (см. Рис. 2). Почему? Просто так издавна утроена планета Земля, вокруг которой существует атмосфера, как газовая аура вокруг шара. Благодаря этой атмосферной ауре живут организмы и проистекают самые жизненные реакции веществ, постоянно потребляющие кислород, и растения, которые этот кислород постоянно вырабатывают и восстанавливают т.н. кислородный атмосферный баланс. Самые яркие примеры - это ветер, горение (как процесс окисления) и дыхание живых организмов, животных, людей.

Кривая изменения атмосферного давления до высоты 12 км над уровнем моря показана на Рис. 3.

Земная атмосфера . Принято считать, что это смесь 14 основных «земных» газов (см. Рис. 1), из которых три составляют львиную долю, в целом более 99% (азот - более 78%, кислород - более 20%, паров воды может быть более 1%).

Земная атмосфера делится на зоны по параметрам давления и температуры: тропосферу, стратосферу, мезосферу и термосферу (см. Рис. 4).

Вакуум - это всякое давление, величина которого ниже атмосферного. Нормальным атмосферным давлением в земных условиях принято считать абсолютное давление атмосферного столба на уровне поверхности мирового океана (моря). Это значение составляет 1013 мбар абс. «абс.» - здесь имеется в виду абсолютное давление, которое равно нулю в том случае, когда в объеме нет ни одной молекулы газов. Т.к. на поверхности земли, в её недрах и в атмосфере всегда есть газообразные вещества и пары жидких веществ, то абсолютный вакуум недостижим в земных условиях. Как бы быстро и хорошо не откачивались объемы современными вакуумными насосами, какими бы герметичными они бы ни были, в микроскопических шероховатостях стенок объемов всегда есть определенное количество молекул газов, которые невозможно удалить из этих микрорельефов. Кроме того, при давлении на стенки сосудов извне всегда есть проскакивающие, как бы просачивающиеся сквозь сито, внутрь молекулы газов, даже сквозь твёрдые кристаллические решетки металлов. В закрытых объёмах всегда есть явления газовой десорбции, т.е. выделения молекул газов со стенок объема вовнутрь, всегда есть микропоры и микротрещины, через которые газы проникают в зоны низкого давления. Всё это не позволяет получить абсолютный вакуум в земных условиях.



Факты : Альпы - это горный массив, пересекающий границы шести стран. В самом их сердце возвышается знаменитая гора Монблан, находящаяся на границе Франции и Италии.

Сами Альпы представляют собой горную гряду, которая тянется по Европе почти 1200 км, в самом широком месте между итальянской Вероной и немецким Гармиш-Партенкирхеном имеет ширину около 260 км, занимая общую площадь в 190 тыс. кв. км. Альпы полностью или частично находятся на территории 8 стран. По доле общей площади государства, приходящейся на Альпы, эти страны располагаются следующим образом: Лихтенштейн (100%), Монако (100%), Австрия (65%), Швейцария (60%), Словения (40%), Италия (17%), Франция (7%), Германия (3%).


Факты : Эверест, она же Джомолунгма - высочайшая вершина в мире, высота этой горы составляет 8848 метров. Эверест расположен в Гималайских горах, которые протягиваются по Тибетскому нагорью и Индо-Гангской равнине на территории нескольких стран: Непала, Индии, Бутана, Китая.

Вершина Эвереста расположена на территории Китая, но сама гора находится на китайско-непальской границе.


Факты : В гражданской и военной авиации очень важно поддерживать атмосферное давление внутри самолета, т.к. при поднятии его на любую высоту от поверхности Земли, давление за бортом падает, а это влечет за собой отток воздуха из салона самолета во внешнюю среду. Чтобы этого не происходило требуется выполнение двух основных условий нормального полета с лётчиком или пассажирами внутри:

Корпус самолета должен быть герметичен (max отсутствие утечек воздуха наружу);
- в корпус необходимо подавать воздух компрессорами под избыточным давлением, чтобы компенсировать всегда существующие утечки и микро утеки воздуха наружу.

Если в военных самолётах можно решить проблему утечек индивидуальными масками пилотов, то в гражданских самолётах, где много пассажиров, создают специальные автоматизированные системы поддержания атмосферного давления.


Рис. 3. График снижения атмосферного давления с высотой над уровнем моря (от 0 до 12) км.

Рис. 4. Диаграмма распределения температуры воздуха в 4-х слоях атмосферного столба:
тропосфера (до 11 км), стратосфера (от 11 до 47 км), мезосфера (от 47 до 80 км), термосфера (свыше 80 км).

3. Градация вакуума по глубине (технические уровни вакуума).

Существует несколько методик по разбивке всей возможной шкалы низкого давления на различные интервалы (отрезки). Самые распространенные - это академическая градация и индустриальная градация.

Академический основан на оценке плотности (степени разрежения) газов по характеру движения их молекул в объёмах путем соизмерения длин пробега молекул между их столкновениями друг с другом и со стенками сосудов, т.е. соизмерения т.н. длин свободного пробега. Чем больше средняя длина свободного пробега молекулы, тем лучше вакуум. Так, например, если молекула газа в объёме успевает пролететь от стенки к стенке не соударяясь с другими молекулами, то это показатель того, что в таком объёме достигнут сверхвысокий вакуум.

Так как мы специализируемся на поставках оборудования для промышленных применений, то рассмотрим в этой статье индустриальный подход к разбивке вакуума на 4 класса (интервала). Этот метод соответствует европейскому стандарту DIN 28400. Классы вакуума приведены в Таблице 2.

Таблица 2
Технические уровни вакуума (classes) Диапазон давлений (pressure range)
ФОРВАКУУМ (rough vacuum) (от 1000 до 1) мбар абс.
СРЕДНИЙ ВАКУУМ (fine vacuum) (от 1 до 10 -3) мбар абс.
ВЫСОКИЙ ВАКУУМ (high vacuum) (от 10 -3 до 10 -7) мбар абс.
СВЕРХВЫСОКИЙ ВАКУУМ (ultrahigh vacuum) (10 -7 и ниже) мбар абс.

4. Базовые законы ФИЗИКИ ГАЗА и уравнение состояния идеального газа.

Закон Бойля-Мариотта.

Закон Бойля-Мариотта был установлен английским физиком Робертом Бойлем в 1662 г. и независимо от него французским ученым Эдмом Мариоттом в 1679 г. и звучит так:

Для данной массы газа при неизменной температуре произведение его давления p на объем V есть величина постоянная:

PV = const [ 2 ]

Этот закон также называется ЗАКОНОМ ИЗОТЕРМИЧЕСКОГО ПРОЦЕССА.

Как пример:

при постепенном росте объёма определенного количества газа, чтобы сохранить его температуру неизменной, давление газа должно также постепенно снижаться.


Закон Гей-Люссака.

Закон, связывающий объем газа V и его температуру T , был установлен французским ученым Жозефом Гей-Люссаком в 1802 г.

Для данной массы газа при постоянном давлении отношение объёма газа к его температуре есть величина постоянная.

VT = const [ 3 ]

Этот закон еще называют ЗАКОНОМ ИЗОБАРНОГО ПРОЦЕССА.

Как пример:

при постепенном нагреве определенного количества газа, чтобы сохранить давление неизменным, газ должен также постепенно расширяться.


Закон Шарля.

Закон, связывающий давление газа p и его температуру T , установлен Жаком Шарлем в 1787 году.

Для данной массы газа в закрытом герметичном объёме давление газа всегда прямо пропорционально его температуре.

PT = const [ 4 ]

Этот закон еще называют ЗАКОНОМ ИЗОХОРОГО ПРОЦЕССА.

Как пример:

при постепенном нагреве определенного количества газа в закрытом объёме, также постепенно будет расти и его давление.

Уравнение состояния идеального газа.

Уравнение, позволяющее обобщить все три основных газовых закона термодинамики называется уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Оно дает взаимосвязь трёх важнейших макроскопических параметров, описывающих состояние идеального газа: давления p , объема V , температуры T ,- и имеет вид:

[ 5 ]
p ∗ V = Const = f, где f зависит от рода газа
T
или при записи в другом виде: [ 6 ]
p ∗ V = m ∗ R∗T
μ

p - давление газа, Па (Н/м 2)

V - объём газа, м 3

m - масса газа, кг

μ - молярная масса газа

R = 8,31 Дж/моль ∗ К - универсальная газовая постоянная,

T - температура газа, °К (градусы абсолютной шкалы Кельвина).

Под идеальным газом понимается газ, частицы которого являются не взаимодействующими на расстоянии материальными точками и испытывают абсолютно упругие соударения друг с другом и со стенками сосудов.

Важно понимать, что все газовые законы работают для фиксированной массы (количества) газа.

Законы эти хорошо работают для режимов вакуума и не приемлемы при очень высоких давлениях и температурах.

5. Конструктивные типы вакуумных насосов.

Если говорить об уровне вакуума и его использовании в промышленных и исследовательских целях, то:

В массовой мировой промышленности очень широко применяют форвакуум и средний вакуум;

В более редких высоких технологиях используют форвакуум, средний и высокий вакуум;

В лабораториях и исследованиях можно встретить все классы вакуума, в т.ч. и сверхвысокий.

Для получения всех классов в промышленности применяют различные конструкции вакуумных насосов, основные типы которых приведены в Таблице 3.

Таблица 3

Тип насоса

Конструктивный вид
(схема)

Диапазон рабочих давлений

Мембранный вакуумный насос:

1 ступень откачки
- 2 ступени откачки
- 3 ступени откачки
- 4 ступени откачки

Соответственно работа в диапазоне:

От 100 мбар абс. до атмосферного давления
- от 10 мбар абс. до атмосферного давления
- от 2 мбар абс. до атмосферного давления
- от 0,5 мбар абс. до атмосферного давления

Вихревая воздуходувка

от 600 мбар абс. до атмосферного давления

Двухроторнвя воздуходувка


от 400 мбар абс. до атмосферного давления

Сухой пластинчато-роторный

вакуумный насос

от 150 мбар абс. до атмосферного давления

Водокольцевой вакуумный насос

от 33 мбар абс. до атмосферного давления

Сухой кулачковый вакуумный насос

от 20 мбар абс. до атмосферного давления

Пластинчато-роторный вакуумный насос с рецикркуляционной смазкой

от 0,5 мбар абс. до атмосферного давления

Сухой спиральный вакуумный насос

Сухой винтовой вакуумный насос


от 0,01 мбар абс. до атмосферного давления

2-х ступенчатый пластинчато-роторный вакуумный насос с масляной ванной

от 0,0005 мбар абс. до атмосферного давления

Сухой вакуумный насос Рутса (бустерный)


от 0,001 до 25 мбар абс.

Высоковакуумные насосы:

Турбомолекулярные
- диффузионные паромасляные
- криогенные
- магниторазрядные
- сорбционные, ионные и гетероионные

от 10 -11 до 5 мбар абс.

В этом разделе основной акцент сделан на насосы для получения форвакуума, т.к. это самая востребованная ниша рынка вакуумного оборудования, и не только в России и странах СНГ, а и во всем мире.

Следует также знать, что высоковакуумные насосы не могут работать без вакуумных насосов фор- и среднего вакуума, т.к. они стартуют в работу только с пониженных давлений (как правило, со среднего вакуума) и выхлоп у них должен происходить в зону вакуума, иначе высокий и сверхвысокий вакуум недостижим. Т.о. форвакуумные насосы и насосы среднего вакуума востребованы во всех отраслях промышленности, высокотехнологичных сферах и в научных исследованиях.

И технике под ним подразумевают среду, в которой газ содержится под давлением меньше атмосферного. Что такое разреженные газы, когда о них узнали впервые?

Страницы истории

Идея пустоты на протяжении многих веков была предметом спора. Разреженные газы пытались анализировать древнегреческие и древнеримские философы. Демокрит, Лукреций, их ученики считали: если бы между атомами не было свободного пространства, их движение было бы невозможно.

Аристотель и его последователи опровергали эту концепцию, по их мнению, в природе не должно быть «пустоты». В средние века в Европе идея «боязни пустоты» стала приоритетной, ее использовали в религиозных целях.

Механики Древней Греции при создании технических устройств основывались на К примеру, водяные насосы, которые функционировали при создании над поршнем разрежения, появились во времена Аристотеля.

Разреженное состояние газа, воздуха, стало основой для изготовления поршневых вакуумных насосов, которые широко применяются в настоящее время в технике.

Их прототипом был знаменитый поршневой шприц Герона Александрийского, созданный им для вытягивания гноя.

В середине семнадцатого века была разработана первая вакуумная камера, а спустя шесть лет немецкому ученому Отто фон Герику удалось изобрести первый вакуумный насос.

Этот поршневой цилиндр легко откачивал воздух из герметичной емкости, создавал там вакуум. Это позволило изучить основные характеристики нового состояния, проанализировать его эксплуатационные свойства.

Технический вакуум

На практике разреженное состояние газа, воздуха именуют техническим вакуумом. В больших объемах невозможно получать такое идеальное состояние, так как при определенной температуре материалы имеют ненулевую плотность насыщенных паров.

Причиной невозможности получения идеального вакуума также является пропускание стеклянными, металлическими стенками сосудов газообразных веществ.

В небольших количествах вполне можно получать разреженные газы. В качестве меры разряжения используют длину беспрепятственного пробега молекул газа, которые хаотично сталкиваются, а также линейный размер используемого сосуда.

Между высоковакуумным насосом и атмосферным воздухом ставится форвакуумный нанос, который создает предварительное разрежение. В случае последующего понижения в камере давления наблюдается увеличение длины пробега частиц газообразного вещества.

При показателях давления от 10 -9 Па создается сверхвысокий вакуум. Именно такие разреженные газы используют для проведения экспериментов с применением сканирующего туннельного микроскопа.

Получить такое состояние в порах некоторых кристаллов удается даже при атмосферном давлении, так как диаметр пор намного меньше длины пробега свободной частицы.

Приборы на основе вакуума

Разреженное состояние газа активно применяется в приборах, которые называются вакуумными насосами. Для всасывания газов и получения определенной степени вакуума применяют геттеры. Вакуумная техника также подразумевает многочисленные приборы, которые необходимы для контроля и измерения данного состояния, а также для управления предметами, проведения различных технологических процессов. Самыми сложными техническими устройствами, в которых применяются разреженные газы, являются высоковакуумные насосы. Например, диффузионные приборы функционируют на основе движения молекул остаточных газов под действием потока рабочего газа. Даже в случае идеального вакуума при достижении конечной температуры существует незначительное тепловое излучение. Это объясняет основные свойства разреженных газов, например, наступление теплового равновесия через определенный временной промежуток между телом и стенками вакуумной камеры.

Разреженный одноатомный газ является отличным термоизолятором. В нем перенос тепловой энергии осуществляется только с помощью излучения, теплопроводность и конвекция не наблюдаются. Данное свойство применяется в (термосах), состоящих из двух емкостей, между которыми располагается вакуум.

Вакуум нашел широкое применение и в радиолампах, например, магнетронах кинескопов, микроволновых печей.

Физический вакуум

В квантовой физике под таким состоянием подразумевают основное (низшее) энергетическое состояние квантового поля, которое характеризуется нулевыми значениями

В таком состоянии одноатомный газ не является абсолютно пустым. Согласно квантовой теории, в физическом вакууме систематически появляются и исчезают виртуальные частицы, что вызывает нулевые колебания полей.

Теоретически одновременно могут существовать несколько разнообразных вакуумов, которые отличаются между собой плотностью энергии, а также иными физическими характеристиками. Эта идея стала основой в инфляционной теории огромного взрыва.

Ложный вакуум

Под ним подразумевается состояние поля в квантовой теории, не являющееся состоянием с минимальной энергией. Оно стабильно на протяжении определенного временного промежутка. Есть вероятность «туннелирования» ложного состояния в истинный вакуум при достижении необходимых значений основных физических величин.

Космическое пространство

Рассуждая над тем, что значит разреженный газ, необходимо остановиться и на понятии «космического вакуума». Его можно считать близким к физическому вакууму, но существующему в межзвездном пространстве. У планет, их естественных спутников, многих звезд существуют определенные силы притяжения, которые удерживают на определенном расстоянии атмосферы. По мере удаления от поверхности звездного объекта, меняется плотность разреженного газа.

Например, существует линия Кармана, которая считается общим определением с космическим пространством границы планеты. За ней резко снижается величина изотропного давления газа в сравнении с солнечным излучением и динамическим давлением солнечного ветра, поэтому трудно интерпретировать давление разреженного газа.

В космическом пространстве много фотонов, реликтовых нейтрино, которые сложно обнаружить.

Особенности измерения

Степень вакуума принято определять тем количеством вещества, которое осталось в системе. Основной характеристикой измерения этого состояния является абсолютное давление, кроме того, учитывается химический состав газа, его температура.

Важным параметром для вакуума является среднее значение длины пробега газов, оставшихся в системе. Существует подразделение вакуума на определенные диапазоны в соответствии с технологией, которая необходима для проведения измерений: ложный, технический, физический.

Вакуумная формовка

Это изготовление изделий из современных термопластичных материалов в горячем виде с помощью воздействия низкого давления воздуха или действия вакуума.

Вакуумную формовку считают способом вытяжки, в результате которой происходит нагревание листового пластика, находящегося над матрицей, до некоторого температурного значения. Далее происходит повторение листом формы матрицы, это объясняется созданием между ней и пластиком вакуума.

Электровакуумные приборы

Ими являются устройства, которые предназначены для создания, усиления, а также преобразования электромагнитной энергии. В таком приборе из рабочего пространства удален воздух, а для защиты от окружающей среды используется непроницаемая оболочка. Примерами подобных устройств являются электронные вакуумные приборы, где электроны подходят в вакууме. Лампы накаливания также можно считать электровакуумными приборами.

Газы при низких давлениях

Газ называют разреженным, если величина его плотности незначительна, и длина пробега молекул сравнима с размерами того сосуда, в котором находится газ. В подобном состоянии наблюдается уменьшение количества электронов пропорционально плотности газа.

В случае сильно разреженного газа практически отсутствует внутреннее трение. Вместо этого появляется внешнее трение перемещающегося газа о стенки, которое объясняется изменением величины импульса молекулами при сталкивании с сосудом. В подобной ситуации существует прямая пропорциональность между скоростью движения частиц и плотностью газа.

В случае низкого вакуума наблюдаются частые столкновения между частицами газа в полном объеме, которые сопровождаются стабильным обменом тепловой энергией. Это объясняет явление переноса (диффузию, теплопроводность), активно используется в современной технике.

Получение разреженных газов

Научное изучение и развитие вакуумных приборов началось в середине семнадцатого века. В 1643 году итальянцу Торричелли удалось определить величину атмосферного давления, а после изобретения О. Герике механического поршневого насоса со специальным водяным уплотнителем, появилась реальная возможность для проведения многочисленных исследований характеристик разряженного газа. Одновременно исследовались возможности воздействия вакуума на живые существа. Опыты, проводимые в условиях вакуума с электрическим разрядом, способствовали открытию отрицательного электрона, рентгеновского излучения.

Благодаря теплоизолирующей способности вакуума появилась возможность объяснить способы передачи тепла, использовать теоретические сведения для развития современной криогенной техники.

Применение вакуума

В 1873 году был изобретен первый электровакуумный прибор. Им стала лампа накаливания, созданная русским физиком Лодыгиным. Именно с этого времени расширилось практическое использование вакуумной техники, появились новые методы получения, а также изучения данного состояния.

За незначительный временной промежуток были созданы различные виды вакуумных насосов:

  • вращательный;
  • криосорбционный;
  • молекулярный;
  • диффузионный.

В начале двадцатого века академику Лебедеву удалось усовершенствовать научные основы вакуумной промышленности. До середины прошлого века ученые не допускали возможности получения давления меньше 10-6 Па.

В настоящее время создают цельнометаллическими, чтобы избежать утечки. Вакуумные криогенные насосы применяют не только в научно-исследовательских лабораториях, но и в различных сферах промышленности.

Например, после разработки специальных откачных средств, которые не загрязняют используемый объект, появились новые перспективы использования вакуумной техники. В химии такие системы активно используются для качественного и количественного анализа свойств разделения смеси на компоненты, анализа скорости протекания различных процессов.