Водородная бомба вред какой. Я пережил взрыв водородной бомбы. Испытание на Новой Земле

ВОДОРОДНАЯ БОМБА, оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.

В 1961 году был произведен самый мощный взрыв водородной бомбы.

Утром 30 октября в 11 ч. 32 мин. над Новой Землей в районе Губы Митюши на высоте 4000 м над поверхностью суши была взорвана водородная бомба мощностью в 50 млн. т. тротила.

Советский Союз провел испытание самого мощного в истории термоядерного устройства. Даже в "половинном" варианте (а максимальная мощность такой бомбы составляет 100 мегатонн) энергия взрыва десятикратно превышала суммарную мощность всех взрывчатых веществ, использованных всеми воюющими сторонами за годы Второй мировой войны (включая атомные бомбы, сброшенные на Хиросиму и Нагасаки). Ударная волна от взрыва трижды обогнула земной шар, первый раз - за 36 ч. 27 мин.

Световая вспышка была настолько яркой, что, несмотря на сплошную облачность, была видна даже с командного пункта в поселке Белушья Губа (отдаленном от эпицентра взрыва почти на 200 км). Грибовидное облако выросло до высоты 67 км. К моменту взрыва, пока на огромном парашюте бомба медленно опускалась с высоты 10500 до расчетной точки подрыва, самолет-носитель Ту-95 с экипажем и его командиром майором Андреем Егоровичем Дурновцевым уже был в безопасной зоне. Командир возвращался на свой аэродром подполковником, Героем Советского Союза. В заброшенном поселке - 400 км от эпицентра - были порушены деревянные дома, а каменные лишились крыш, окон и дверей. На многие сотни километров от полигона в результате взрыва почти на час изменились условия прохождения радиоволн, и прекратилась радиосвязь.

Бомба была разработана В.Б. Адамским, Ю.Н. Смирновым, А.Д. Сахаровым, Ю.Н. Бабаевым и Ю.А. Трутневым (за что Сахаров был награжден третьей медалью Героя Социалистического Труда). Масса "устройства" составляла 26 тонн, для ее транспортировки и сброса использовался специально модифицированный стратегический бомбардировщик Ту-95.

"Супербомба", как называл ее А.Сахаров, не помещалась в бомбовом отсеке самолета (ее длина составляла 8 метров, а диаметр - около 2 метров), поэтому несиловую часть фюзеляжа вырезали и смонтировали специальный подъемный механизм и устройство для крепления бомбы; при этом в полете она все равно больше чем наполовину торчала наружу. Весь корпус самолета, даже лопасти его винтов, был покрыт специальной белой краской, защищающей от световой вспышки при взрыве. Такой же краской был покрыт корпус сопровождавшего самолета-лаборатории.

Результаты взрыва заряда, получившего на Западе имя «Царь-бомба», впечатляли:

* Ядерный «гриб» взрыва поднялся на высоту 64 км; диаметр его шляпки достиг 40 километров.

Огненный шар разрыва достиг земли и почти достиг высоты сброса бомбы (то есть, радиус огненного шара взрыва был примерно 4,5 километра).

* Излучение вызывало ожоги третьей степени на расстоянии до ста километров.

* На пике выделения излучения взрыв достиг мощности в 1 % от солнечной.

* Ударная волна, возникшая в результате взрыва, три раза обогнула земной шар.

* Ионизация атмосферы стала причиной помех радиосвязи даже в сотнях километров от полигона в течение одного часа.

* Свидетели почувствовали удар и смогли описать взрыв на расстоянии тысячи километров от эпицентра. Также, ударная волна в какой-то степени сохранила разрушительную силу на расстоянии тысячи километров от эпицентра.

* Акустическая волна докатилась до острова Диксон, где взрывной волной повыбивало окна в домах.

Политическим результатом этого испытания была демонстрация Советским Союзом владения неограниченным по мощности оружием массового уничтожения -- максимальный мегатоннаж бомбы из испытанных к тому моменту США был вчетверо меньше, чем у «Царь-бомбы». В самом деле, увеличение мощности водородной бомбы достигается простым увеличением массы рабочего материала, так что, в принципе, нет никаких факторов, препятствующих созданию 100-мегатонной или 500-мегатонной водородной бомбы. (На самом деле, «Царь-бомба» была рассчитана на 100-мегатонный эквивалент; планируемую мощность взрыва урезали вдвое, по словам Хрущёва, «Чтобы не разбить все стёкла в Москве»). Этим испытанием Советский Союз продемонстрировал способность создать водородную бомбу любой мощности и средства доставки бомбы к точке подрыва.

Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.

Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H 2 O) показали, что в ней в ничтожном количестве присутствует «тяжелая» вода, содержащая «тяжелый изотоп» водорода - дейтерий (2 H). Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону.

Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.

Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4 ? 8 Мт в тротиловом эквиваленте.

Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия.

Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно «Счастливый дракон», а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.

Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HB заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе.

Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.

Деление, синтез, деление (супербомба). На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных «осколка». В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб.

Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.

12 августа 1953 года в 7.30 утра на Семипалатинском полигоне была испытана первая советская водородная бомба , которая имела служебное название "Изделие РДС‑6c". Это было четвертое по счету советское испытание ядерного оружия.

Начало первых работ по термоядерной программе в СССР относится ещё к 1945 году . Тогда была получена информация об исследованиях, ведущихся в США над термоядерной проблемой. Они были начаты по инициативе американского физика Эдварда Теллера в 1942 году. За основу была взята теллеровская концепция термоядерного оружия, получившая в кругах советских ученых‑ядерщиков название "труба" ‑ цилиндрический контейнер с жидким дейтерием, который должен был нагреваться от взрыва инициирующего устройства типа обычной атомной бомбы. Только в 1950 году американцы установили, что "труба" бесперспективна, и они продолжили разработку других конструкций. Но к этому времени советскими физиками уже была самостоятельно разработана другая концепция термоядерного оружия, которая вскоре ‑ в 1953 году ‑ привела к успеху.

Альтернативную схему водородной бомбы придумал Андрей Сахаров. В основу бомбы им была положена идея "слойки" и применения дейтерида лития‑6. Разработанный в КБ‑11 (сегодня это город Саров, бывший Арзамас‑16, Нижегородская область) термоядерный заряд РДС‑6с представлял собой сферическую систему из слоев урана и термоядерного горючего, окруженных химическим взрывчатым веществом.

Академик Сахаров - депутат и диссидент 21 мая исполняется 90 лет со дня рождения советского физика, политического деятеля, диссидента, одного из создателя советской водородной бомбы, лауреата Нобелевской премии мира академика Андрея Сахарова. Он умер в 1989 году в возрасте 68 лет, семь из которых Андрей Дмитриевич провел в ссылке.

Для увеличения энерговыделения заряда в его конструкции был использован тритий. Основная задача при создании подобного оружия заключалась в том, чтобы с помощью энергии, выделенной при взрыве атомной бомбы, нагреть и поджечь тяжелый водород — дейтерий, осуществить термоядерные реакции с выделением энергии, способные сами себя поддерживать. Для увеличения доли "сгоревшего" дейтерия Сахаров предложил окружить дейтерий оболочкой из обычного природного урана, который должен был замедлить разлет и, главное, существенно повысить плотность дейтерия. Явление ионизационного сжатия термоядерного горючего, ставшее основой первой советской водородной бомбы, до сих пор называют "сахаризацией".

По результатам работ над первой водородной бомбой Андрей Сахаров получил звание Героя Соцтруда и лауреата Сталинской премии.

"Изделие РДС‑6с" было выполнено в виде транспортабельной бомбы весом 7 тонн, которая помещалась в бомбовом люке бомбардировщика Ту‑16. Для сравнения — бомба, созданная американцами, весила 54 тонн и была размером с трехэтажный дом.

Чтобы оценить разрушительные воздействия новой бомбы, на Семипалатинском полигоне построили город из промышленных и административных зданий. В общей сложности на поле имелось 190 различных сооружений. В этом испытании впервые были применены вакуумные заборники радиохимических проб, автоматически открывавшиеся под действием ударной волны. Всего к испытаниям РДС‑6с было подготовлено 500 различных измерительных, регистрирующих и киносъемочных приборов, установленных в подземных казематах и прочных наземных сооружениях. Авиационно‑техническое обеспечение испытаний — измерение давления ударной волны на самолет, находящийся в воздухе в момент взрыва изделия, забор проб воздуха из радиоактивного облака, аэрофотосъемка района осуществлялось специальной летной частью. Подрыв бомбы осуществлялся дистанционно, подачей сигнала с пульта, который находился в бункере.

Было решено произвести взрыв на стальной башне высотой 40 метров, заряд был расположен на высоте 30 метров . Радиоактивный грунт от прошлых испытаний был удален на безопасное расстояние, специальные сооружения были отстроены на своих же местах на старых фундаментах, в 5 метрах от башни был сооружен бункер для установки разработанной в ИХФ АН СССР аппаратуры, регистрирующей термоядерные процессы.

На поле установили военную технику всех родов войск. В ходе испытаний были уничтожены все опытные сооружения в радиусе до четырех километров. Взрыв водородной бомбы мог бы полностью разрушить город в 8 километров в поперечнике. Экологические последствия взрыва оказались ужасающими: на долю первого взрыва приходится 82% стронция‑90 и 75% цезия‑137.

Мощность бомбы достигла 400 килотонн, в 20 раз больше первых атомных бомб в США и СССР.

Уничтожение последнего ядерного заряда в Семипалатинске. Справка 31 мая 1995 г. на бывшем Семипалатинском полигоне был уничтожен последний ядерный заряд. Семипалатинский полигон был создан в 1948 г. специально для проведения испытаний первого советского ядерного устройства. Полигон располагался в северо-восточном Казахстане.

Работа по созданию водородной бомбы стала первой в мире интеллектуальной "битвой умов" поистине мирового масштаба. Создание водородной бомбы инициировало появление совершенно новых научных направлений — физики высокотемпературной плазмы, физики сверхвысоких плотностей энергии, физики аномальных давлений. Впервые в истории человечества было масштабно использовано математическое моделирование.

Работы по "изделию РДС‑6с" создали научно‑технический задел, который затем был использован в разработке несравнимо более совершенной водородной бомбы принципиально нового типа — водородной бомбы двухстадийной конструкции.

Водородная бомба сахаровской конструкции не только стала серьезным контраргументом в политическом противостоянии между США и СССР, но и послужила причиной бурного развития советской космонавтики тех лет. Именно после успешных ядерных испытаний ОКБ Королева получило важное правительственное задание разработать межконтинентальную баллистическую ракету для доставки к цели созданного заряда. В дальнейшем ракета, получившая название "семерка", вывела в космос первый искусственный спутник Земли , и именно на ней стартовал первый космонавт планеты Юрий Гагарин.

Материал подготовлен на основе информации открытых источников

ВОДОРОДНАЯ БОМБА
оружие большой разрушительной силы (порядка мегатонн в тротиловом эквиваленте), принцип действия которого основан на реакции термоядерного синтеза легких ядер. Источником энергии взрыва являются процессы, аналогичные процессам, протекающим на Солнце и других звездах.
Термоядерные реакции. В недрах Солнца содержится гигантское количество водорода, находящегося в состоянии сверхвысокого сжатия при температуре ок. 15 000 000 К. При столь высоких температуре и плотности плазмы ядра водорода испытывают постоянные столкновения друг с другом, часть из которых завершается их слиянием и в конечном счете образованием более тяжелых ядер гелия. Подобные реакции, носящие название термоядерного синтеза, сопровождаются выделением огромного количества энергии. Согласно законам физики, энерговыделение при термоядерном синтезе обусловлено тем, что при образовании более тяжелого ядра часть массы вошедших в его состав легких ядер превращается в колоссальное количество энергии. Именно поэтому Солнце, обладая гигантской массой, в процессе термоядерного синтеза ежедневно теряет ок. 100 млрд. т вещества и выделяет энергию, благодаря которой стала возможной жизнь на Земле.
Изотопы водорода. Атом водорода - простейший из всех существующих атомов. Он состоит из одного протона, являющегося его ядром, вокруг которого вращается единственный электрон. Тщательные исследования воды (H2O) показали, что в ней в ничтожном количестве присутствует "тяжелая" вода, содержащая "тяжелый изотоп" водорода - дейтерий (2H). Ядро дейтерия состоит из протона и нейтрона - нейтральной частицы, по массе близкой к протону. Существует третий изотоп водорода - тритий, в ядре которого содержатся один протон и два нейтрона. Тритий нестабилен и претерпевает самопроизвольный радиоактивный распад, превращаясь в изотоп гелия. Следы трития обнаружены в атмосфере Земли, где он образуется в результате взаимодействия космических лучей с молекулами газов, входящих в состав воздуха. Тритий получают искусственным путем в ядерном реакторе, облучая изотоп литий-6 потоком нейтронов.
Разработка водородной бомбы. Предварительный теоретический анализ показал, что термоядерный синтез легче всего осуществить в смеси дейтерия и трития. Приняв это за основу, ученые США в начале 1950 приступили к реализации проекта по созданию водородной бомбы (HB). Первые испытания модельного ядерного устройства были проведены на полигоне Эниветок весной 1951; термоядерный синтез был лишь частичным. Значительный успех был достигнут 1 ноября 1951 при испытании массивного ядерного устройства, мощность взрыва которого составила 4е8 Мт в тротиловом эквиваленте. Первая водородная авиабомба была взорвана в СССР 12 августа 1953, а 1 марта 1954 на атолле Бикини американцы взорвали более мощную (примерно 15 Мт) авиабомбу. С тех пор обе державы проводили взрывы усовершенствованных образцов мегатонного оружия. Взрыв на атолле Бикини сопровождался выбросом большого количества радиоактивных веществ. Часть из них выпала в сотнях километров от места взрыва на японское рыболовецкое судно "Счастливый дракон", а другая покрыла остров Ронгелап. Поскольку в результате термоядерного синтеза образуется стабильный гелий, радиоактивность при взрыве чисто водородной бомбы должна быть не больше, чем у атомного детонатора термоядерной реакции. Однако в рассматриваемом случае прогнозируемые и реальные радиоактивные осадки значительно различались по количеству и составу.
Механизм действия водородной бомбы. Последовательность процессов, происходящих при взрыве водородной бомбы, можно представить следующим образом. Сначала взрывается находящийся внутри оболочки HБ заряд-инициатор термоядерной реакции (небольшая атомная бомба), в результате чего возникает нейтронная вспышка и создается высокая температура, необходимая для инициации термоядерного синтеза. Нейтроны бомбардируют вкладыш из дейтерида лития - соединения дейтерия с литием (используется изотоп лития с массовым числом 6). Литий-6 под действием нейтронов расщепляется на гелий и тритий. Таким образом, атомный запал создает необходимые для синтеза материалы непосредственно в самой приведенной в действие бомбе. Затем начинается термоядерная реакция в смеси дейтерия с тритием, температура внутри бомбы стремительно нарастает, вовлекая в синтез все большее и большее количество водорода. При дальнейшем повышении температуры могла бы начаться реакция между ядрами дейтерия, характерная для чисто водородной бомбы. Все реакции, конечно, протекают настолько быстро, что воспринимаются как мгновенные.
Деление, синтез, деление (супербомба). На самом деле в бомбе описанная выше последовательность процессов заканчивается на стадии реакции дейтерия с тритием. Далее конструкторы бомбы предпочли использовать не синтез ядер, а их деление. В результате синтеза ядер дейтерия и трития образуются гелий и быстрые нейтроны, энергия которых достаточно велика, чтобы вызвать деление ядер урана-238 (основной изотоп урана, значительно более дешевый, чем уран-235, используемый в обычных атомных бомбах). Быстрые нейтроны расщепляют атомы урановой оболочки супербомбы. Деление одной тонны урана создает энергию, эквивалентную 18 Мт. Энергия идет не только на взрыв и выделение тепла. Каждое ядро урана расщепляется на два сильно радиоактивных "осколка". В число продуктов деления входят 36 различных химических элементов и почти 200 радиоактивных изотопов. Все это и составляет радиоактивные осадки, сопровождающие взрывы супербомб. Благодаря уникальной конструкции и описанному механизму действия оружие такого типа может быть сделано сколь угодно мощным. Оно гораздо дешевле атомных бомб той же мощности.
Последствия взрыва. Ударная волна и тепловой эффект. Прямое (первичное) воздействие взрыва супербомбы носит тройственный характер. Наиболее очевидное из прямых воздействий - это ударная волна огромной интенсивности. Сила ее воздействия, зависящая от мощности бомбы, высоты взрыва над поверхностью земли и характера местности, уменьшается с удалением от эпицентра взрыва. Тепловое воздействие взрыва определяется теми же факторами, но, кроме того, зависит и от прозрачности воздуха - туман резко уменьшает расстояние, на котором тепловая вспышка может вызвать серьезные ожоги. Согласно расчетам, при взрыве в атмосфере 20-мегатонной бомбы люди останутся живы в 50% случаев, если они 1) укрываются в подземном железобетонном убежище на расстоянии примерно 8 км от эпицентра взрыва (ЭВ), 2) находятся в обычных городских постройках на расстоянии ок. 15 км от ЭВ, 3) оказались на открытом месте на расстоянии ок. 20 км от ЭВ. В условиях плохой видимости и на расстоянии не менее 25 км, если атмосфера чистая, для людей, находящихся на открытой местности, вероятность уцелеть быстро возрастает с удалением от эпицентра; на расстоянии 32 км ее расчетная величина составляет более 90%. Площадь, на которой возникающее во время взрыва проникающее излучение вызывает летальный исход, сравнительно невелика даже в случае супербомбы высокой мощности.
Огненный шар. В зависимости от состава и массы горючего материала, вовлеченного в огненный шар, могут образовываться гигантские самоподдерживающиеся огненные ураганы, бушующие в течение многих часов. Однако самое опасное (хотя и вторичное) последствие взрыва - это радиоактивное заражение окружающей среды.
Радиоактивные осадки. Как они образуются.
При взрыве бомбы возникший огненный шар наполняется огромным количеством радиоактивных частиц. Обычно эти частицы настолько малы, что, попав в верхние слои атмосферы, могут оставаться там в течение долгого времени. Но если огненный шар соприкасается с поверхностью Земли, все, что на ней находится, он превращает в раскаленные пыль и пепел и втягивает их в огненный смерч. В вихре пламени они перемешиваются и связываются с радиоактивными частицами. Радиоактивная пыль, кроме самой крупной, оседает не сразу. Более мелкая пыль уносится возникшим в результате взрыва облаком и постепенно выпадает по мере движения его по ветру. Непосредственно в месте взрыва радиоактивные осадки могут быть чрезвычайно интенсивными - в основном это оседающая на землю крупная пыль. В сотнях километров от места взрыва и на более далеких расстояниях на землю выпадают мелкие, но все еще видимые глазом частицы пепла. Часто они образуют похожий на выпавший снег покров, смертельно опасный для всех, кто окажется поблизости. Еще более мелкие и невидимые частицы, прежде чем они осядут на землю, могут странствовать в атмосфере месяцами и даже годами, много раз огибая земной шар. К моменту выпадения их радиоактивность значительно ослабевает. Наиболее опасным остается излучение стронция-90 с периодом полураспада 28 лет. Его выпадение четко наблюдается повсюду в мире. Оседая на листве и траве, он попадает в пищевые цепи, включающие и человека. Как следствие этого, в костях жителей большинства стран обнаружены заметные, хотя и не представляющие пока опасности, количества стронция-90. Накопление стронция-90 в костях человека в долгосрочной перспективе весьма опасно, так как приводит к образованию костных злокачественных опухолей.
Длительное заражение местности радиоактивными осадками. В случае военных действий применение водородной бомбы приведет к немедленному радиоактивному загрязнению территории в радиусе ок. 100 км от эпицентра взрыва. При взрыве супербомбы загрязненным окажется район в десятки тысяч квадратных километров. Столь огромная площадь поражения одной-единственной бомбой делает ее совершенно новым видом оружия. Даже если супербомба не попадет в цель, т.е. не поразит объект ударно-тепловым воздействием, проникающее излучение и сопровождающие взрыв радиоактивные осадки сделают окружающее пространство непригодным для обитания. Такие осадки могут продолжаться в течение многих дней, недель и даже месяцев. В зависимости от их количества интенсивность радиации может достичь смертельно опасного уровня. Сравнительно небольшого числа супербомб достаточно, чтобы полностью покрыть крупную страну слоем смертельно опасной для всего живого радиоактивной пыли. Таким образом, создание сверхбомбы ознаменовало начало эпохи, когда стало возможным сделать непригодными для обитания целые континенты. Даже спустя длительное время после прекращения прямого воздействия радиоактивных осадков будет сохраняться опасность, обусловленная высокой радиотоксичностью таких изотопов, как стронций-90. С продуктами питания, выращенными на загрязненных этим изотопом почвах, радиоактивность будет поступать в организм человека.
См. также
ЯДЕРНЫЙ СИНТЕЗ ;
ЯДЕРНОЕ ОРУЖИЕ ;
ВОЙНА ЯДЕРНАЯ .
ЛИТЕРАТУРА
Действие ядерного оружия. М., 1960 Ядерный взрыв в космосе, на земле и под землей. М., 1970

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ВОДОРОДНАЯ БОМБА" в других словарях:

    Устаревшее название ядерной бомбы большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза легких ядер (см. Термоядерные реакции). Впервые водородная бомба была испытана в СССР (1953) … Большой Энциклопедический словарь

    Термоядерное оружие тип оружия массового поражения, разрушительная сила которого основана на использовании энергии реакции ядерного синтеза легких элементов в более тяжёлые (например, синтеза двух ядер атомов дейтерия (тяжелого водорода) в одно… … Википедия

    Ядерная бомба большой разрушительной силы, действие которой основано на использовании энергии, выделяющейся при реакции синтеза лёгких ядер (см. Термоядерные реакции). Первый термоядерный заряд (мощностью 3 Мт) взорван 1 ноября 1952 в США.… … Энциклопедический словарь

    водородная бомба - vandenilinė bomba statusas T sritis chemija apibrėžtis Termobranduolinė bomba, kurios užtaisas – deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb rus. водородная бомба ryšiai: sinonimas – H bomba … Chemijos terminų aiškinamasis žodynas

    водородная бомба - vandenilinė bomba statusas T sritis fizika atitikmenys: angl. hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f pranc. bombe à hydrogène, f … Fizikos terminų žodynas

    водородная бомба - vandenilinė bomba statusas T sritis ekologija ir aplinkotyra apibrėžtis Bomba, kurios branduolinis užtaisas – vandenilio izotopai: deuteris ir tritis. atitikmenys: angl. H bomb; hydrogen bomb vok. Wasserstoffbombe, f rus. водородная бомба, f … Ekologijos terminų aiškinamasis žodynas

    Бомба взрывного действия большой разрушительной силы. Действие В. б. основано на термоядерной реакции. См. Ядерное оружие … Большая советская энциклопедия

Олег Александрович Лаврентьев, герой нашего рассказа, родился в 1926 году в Пскове. До войны парень успел окончить семь классов. Видимо, где-то под конец этого процесса в его руки попала книжка, рассказывающая о физике атомного ядра и последних открытиях в этой области.

30-е годы XX века были временем открытия новых горизонтов. В 1930 году было предсказано существование нейтрино , в 1932 году открыт нейтрон . В последующие годы были построены первые ускорители элементарных частиц. Возник вопрос о возможности существования трансурановых элементов. В 1938 году Отто Ган впервые получил барий, облучая уран нейтронами, а Лиза Мейтнер смогла объяснить, что произошло. Через несколько месяцев она же предсказала цепную реакцию. До постановки вопроса об атомной бомбе оставался один шаг.

Нет ничего удивительного в том, что хорошее описание этих открытий запало в душу подростка. Несколько нетипичнее то, что этот заряд сохранился в ней во всех последующих передрягах. А потом была война. Олег Лаврентьев успел поучаствовать в ее завершающей стадии, в Прибалтике. Затем перипетии службы забросили его на Сахалин. В части была относительно неплохая библиотека, а на свое денежное довольствие Лаврентьев, тогда уже сержант, выписал журнал «Успехи физических наук» , чем, видимо, произвел немалое впечатление на сослуживцев. Командование поддержало энтузиазм своего подчиненного. В 1948 году он читал лекции по ядерной физике офицерам части, а в следующем году получил аттестат зрелости, пройдя за год трехлетний курс в местной вечерней школе рабочей молодежи. Неизвестно, чему и как там на самом деле учили, но сомневаться в качестве образования младшего сержанта Лаврентьева не приходится - результат был нужен ему самому.

Как вспоминал он сам через много лет, мысль о возможности термоядерной реакции и ее использовании для получения энергии впервые посетила его в 1948 году, как раз при подготовке лекции для офицеров. В январе 1950 года Президент Трумэн, выступая перед Конгрессом, призвал к скорейшему созданию водородной бомбы. Это было ответом на первое советское ядерное испытание в августе предыдущего года. Ну а для младшего сержанта Лаврентьева это было толчком к немедленным действиям: ведь он-то знал, как ему на тот момент думалось, как сделать эту бомбу и опередить потенциального противника.

Первое письмо с описанием идеи, адресованное Сталину, осталось без ответа, и какие-либо его следы впоследствии найдены не были. Скорее всего, оно просто потерялось. Следующее письмо было отправлено надежнее: в ЦК ВКП(б) через Поронайский горком.

В этот раз реакция была заинтересованной. Из Москвы через Сахалинский обком пришла команда выделить настойчивому солдату охраняемую комнату и все необходимое для подробного описания предложений.

Спецработа

На этом месте уместно прервать рассказ о датах и событиях и обратиться к содержанию сделанных высшей советской инстанции предложений.

1. Основные идеи.

2. Опытная установка по преобразованию энергии литиево-водородных реакций в электрическую.

3. Опытная установка по преобразованию энергии урановых и трансурановых реакций в электрическую.

4. Литиево-водородная бомба (конструкция).

Далее О. Лаврентьев пишет, что подготовить части 2 и 3 в подробном виде не успел и вынужден ограничиться кратким конспектом, часть 1 тоже сыровата («написана весьма поверхностно»). По сути, в предложениях рассматриваются два устройства: бомба и реактор, при этом последняя, четвертая, часть - там, где предлагается бомба, - крайне лаконична, это всего несколько фраз, смысл которых сводится к тому, что все уже разобрано в первой части.

В таком виде, «на 12 листах», предложения Ларионова в Москве попали на рецензию к А.Д.Сахарову , тогда еще кандидату физматнаук, а главное, одному из тех людей, которые в СССР тех лет занимались вопросами термоядерной энергии, в основном подготовкой бомбы.

Сахаров выделил в предложении два основных момента: осуществление термоядерной реакции лития с водородом (их изотопов) и конструкция реактора. В написанном, вполне благожелательном, отзыве о первом пункте говорилось кратко - это не подходит.

Непростая бомба

Чтобы ввести читателя в контекст, необходимо сделать краткий экскурс в реальное положение дел. В современной (а, насколько можно судить по открытым источникам, базовые принципы конструкции с конца пятидесятых годов практически не изменились) водородной бомбе роль термоядерной «взрывчатки» выполняет гидрид лития – твердое белое вещество, бурно реагирующее с водой с образованием гидроксида лития и водорода. Последнее свойство дает возможность широко применять гидрид там, где нужно временно связать водород. Хорошим примером является воздухоплавание, но им список, конечно, не исчерпывается.

Гидрид, применяемый в водородных бомбах, отличается своим изотопным составом. Вместо «обычного» водорода в его составе участвует дейтерий, а вместо «обычного» лития - его более легкий изотоп с тремя нейтронами. Получившийся дейтерид лития, 6 LiD, содержит почти все необходимое для большой иллюминации. Чтобы инициировать процесс, достаточно всего-навсего взорвать расположенный поблизости (например, вокруг или, наоборот, внутри) ядерный заряд. Образовавшиеся при взрыве нейтроны поглощаются литием-6, который в результате распадается с образованием гелия и трития. Повышение давления и температуры в результате ядерного взрыва приводит к тому, что вновь появившийся тритий и дейтерий, бывший на месте событий изначально, оказываются в условиях, необходимых для начала термоядерной реакции. Ну вот и все, готово.

А
Б
В
Г
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" alt="А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…" src="/sites/default/files/images_custom/2017/07/bombh_explosion-ru.svg.png">

А Боеголовка перед взрывом; первая ступень вверху, вторая ступень внизу. Оба компонента термоядерной бомбы.
Б Взрывчатое вещество подрывает первую ступень, сжимая ядро плутония до сверхкритического состояния и инициируя цепную реакцию расщепления.
В В процессе расщепления в первой ступени происходит импульс рентгеновского излучения, который распространяется вдоль внутренней части оболочки, проникая через наполнитель из пенополистирола.
Г Вторая ступень сжимается вследствие абляции (испарения) под воздействием рентгеновского излучения, и плутониевый стержень внутри второй ступени переходит в сверхкритическое состояние, инициируя цепную реакцию, выделяя огромное количество тепла.
Д В сжатом и разогретом дейтериде лития-6 происходит реакция слияния, испускаемый нейтронный поток является инициатором реакции расщепления тампера. Огненный шар расширяется…

/ © Википедия

Этот путь не является единственным и уж тем более обязательным. Вместо дейтерида лития можно использовать готовый тритий в смеси с дейтерием. Проблема в том, что оба они - газы, которые сложно содержать и перевозить, не говоря уже о том, чтобы запихнуть в бомбу. Получающаяся конструкция вполне пригодна для взрыва на испытаниях, таковые производились . Проблема только в том, что ее невозможно доставить «адресату» - размеры сооружения исключают такую возможность напрочь. Дейтерид лития, будучи твердым веществом, позволяет элегантно обойти эту проблему.

Изложенное здесь совсем не сложно для нас, живущих сегодня. В 1950 году это было сверхсекретом, доступ к которому имел крайне ограниченный круг лиц. Разумеется, солдат, несущий службу на Сахалине, в этот круг не входил. При этом свойства гидрида лития сами по себе тайной не были, любой мало-мальски компетентный, например в вопросах воздухоплавания, человек о них знал. Неслучайно Виталий Гинзбург , автор идеи применения дейтерида лития в бомбе, на вопрос об авторстве обычно отвечал в том духе, что вообще-то это слишком тривиально.

Конструкция бомбы Лаврентьева в общих чертах повторяет описанную выше. Здесь мы тоже видим инициирующий ядерный заряд и взрывчатку из гидрида лития, причем ее изотопный состав тот же - это дейтерид легкого изотопа лития. Принципиальное отличие в том, что вместо реакции дейтерия с тритием автор предполагает реакцию лития с дейтерием и/или водородом. Умница Лаврентьев догадался, что твердое вещество удобнее в применении и предложил использовать именно 6 Li, но лишь потому, что его реакция с водородом должна дать больше энергии. Чтобы выбрать для реакции другое горючее, требовались данные об эффективных сечениях термоядерных реакций, которых у солдата-срочника, конечно, не было.

Допустим, что Олегу Лаврентьеву еще раз повезло бы: он угадал нужную реакцию. Увы, даже это не сделало бы его автором открытия. Описанная выше конструкция бомбы разрабатывалась к тому времени уже более полутора лет. Разумеется, поскольку все работы были окружены сплошной секретностью, знать о них он не мог. Кроме того, конструкция бомбы - это не только схема размещения взрывчатки, это еще очень много расчетов и конструктивных тонкостей. Выполнить их автор предложения не мог.

Надо сказать, что полная неосведомленность о физических принципах будущей бомбы была характерна тогда и для людей куда более компетентных. Много лет спустя Лаврентьев вспоминал эпизод, бывший с ним чуть позднее, уже в студенческие времена. Проректор МГУ, читавший студентам физику, зачем-то взялся рассказать и о водородной бомбе, представлявшей собой, по его мнению, систему полива вражеской территории жидким водородом. А что? Заморозить врагов - милое дело. У слушавшего его студента Лаврентьева, который про бомбу знал немножко больше, невольно вырвалась нелицеприятная оценка услышанного, но ответить на язвительную реплику услышавшей ее соседки было нечем. Не рассказывать же ей все известные ему подробности.

Рассказанное, видимо, объясняет, почему о проекте «бомбы Лаврентьева» забыли практически сразу после его написания. Автор продемонстрировал недюжинные способности, но этим все и кончилось. Иная судьба оказалась у проекта термоядерного реактора.

Конструкция будущего реактора в 1950 году виделась его автору довольно простой. В рабочую камеру помешается два концентрических (один в другом) электрода. Внутренний выполняется в виде сетки, ее геометрия просчитывается таким образом, чтобы, насколько это возможно, минимизировать контакт с плазмой. На электроды подается постоянное напряжение порядка 0,5–1 мегавольт, причем внутренний электрод (сетка) является отрицательным полюсом, а внешний - положительным. Сама реакция идет в середине установки и вылетающие наружу, через сетку, положительно заряженные ионы (преимущественно, продукты реакции), двигаясь дальше, преодолевают сопротивление электрического поля, которое в итоге разворачивает большую их часть обратно. Энергия, затраченная ими на преодоление поля, - это и есть наш выигрыш, который относительно несложно «снять» с установки.

В качестве основного процесса опять предлагается реакция лития с водородом, которая опять не подходит по тем же причинам, но примечательно не это. Олег Лаврентьев оказался первым человеком, придумавшим изолировать плазму при помощи какого-нибудь поля. Даже то, что в его предложении эта роль, вообще говоря, второстепенна - главная функция электрического поля в том, чтобы получить энергию вылетающих из зоны реакции частиц, - ничуть не меняет значения этого факта.

Как впоследствии неоднократно заявлял Андрей Дмитриевич Сахаров, именно письмо сержанта с Сахалина впервые навело его на мысль использовать поле для удержания плазмы в термоядерном реакторе. Правда, Сахаров и его коллеги предпочли использовать другое поле - магнитное. Пока же он написал в рецензии, что предложенная конструкция скорее всего нереальна, ввиду невозможности сделать сетчатый электрод, который выдержал бы работу в таких условиях. А автора все равно надо поощрить за научную смелость.

Вскоре после отсылки предложений Олег Лаврентьев демобилизуется из армии, отправляется в Москву и становится студентом первого курса физфака МГУ. Имеющиеся источники говорят (с его слов), что сделал это он полностью самостоятельно, без протекции каких-либо инстанций.

«Инстанции», тем не менее, следили за его судьбой. В сентябре Лаврентьев встречается с И.Д.Сербиным , чиновником ЦК ВКП(б) и получателем его писем с Сахалина. По его поручению он описывает свое видение проблемы еще раз, обстоятельнее.

В самом начале следующего, 1951 года первокурсник Лаврентьев был вызван к министру измерительного приборостроения СССР Махневу , где познакомился с самим министром и своим рецензентом А.Д.Сахаровым. Надо заметить, что возглавляемое Махневым ведомство имело к измерительным приборам довольно отвлеченное отношение, его действительным назначением было обеспечение ядерной программы СССР. Сам Махнев был секретарем Специального комитета, председателем которого был всемогущий в ту пору Л.П.Берия . С ним наш студент познакомился через несколько дней. Сахаров снова присутствовал при встрече, но о его роли в ней практически ничего сказать нельзя.

По воспоминаниям О.А.Лаврентьева, он готовился рассказывать сановному начальнику о бомбе и реакторе, но Берию это как будто не интересовало. Разговор велся о самом госте, его достижениях, планах и родственниках. «Это были смотрины, - резюмировал Олег Александрович. - Ему хотелось, как я понял, посмотреть на меня и, возможно, на Сахарова, что мы за люди. По-видимому, мнение оказалось благоприятным».

Следствием «смотрин» стали необычные для советского первокурсника поблажки. Олегу Лаврентьеву была установлена персональная стипендия, выделена для жилья отдельная комната (правда, маленькая - 14 кв. м.), два персональных преподавателя по физике и математике. Он был освобожден от платы за обучение. Наконец, была организована доставка необходимой литературы.

Вскоре состоялось знакомство с техническими руководителями советской атомной программы Б.Л.Ванниковым , Н.И.Павловым и И.В.Курчатовым . Вчерашний сержант, за годы службы не видевший ни одного генерала даже издалека, теперь на равных беседовал сразу с двумя: Ванниковым и Павловым. Правда, вопросы задавал в основном Курчатов.

Очень похоже, что предложениям Лаврентьева после его знакомства с Берией послушно придавалось даже слишком большое значение. В Архиве Президента РФ лежит адресованное Берии и подписанное вышеупомянутыми тремя собеседниками предложение о создании «небольшой теоретической группы» для обсчета идей О. Лаврентьева. Была ли такая группа создана и если да, то с каким результатом, сейчас неизвестно.

Вход в Курчатовский инстутут. Современная фотография. / © Викимедиа

В мае наш герой получил пропуск в ЛИПАН - Лабораторию измерительных приборов Академии наук, ныне Институт им. Курчатова. Странное тогдашнее название тоже было данью всеобщей секретности. Олег был назначен практикантом в отдел электроаппаратуры с задачей ознакомиться с идущей уже работой над МТР (магнитным термоядерным реактором). Как и в университете, к особому гостю был прикреплен персональный гид, «специалист по газовым разрядам тов. Андрианов» - так гласит докладная записка на имя Берии.

Сотрудничество с ЛИПАНом уже тогда вышло достаточно напряженным. Там проектировали установку с удержанием плазмы магнитным полем, впоследствии ставшую токамаком, а Лаврентьев хотел работать над доработанной версией электромагнитной ловушки, восходившей к его сахалинским мыслям. В конце 1951 года в ЛИПАНе состоялось детальное обсуждение его проекта. Оппоненты не нашли в нем ошибок и в целом признали работу верной, но реализовывать отказались, решив «сосредоточить силы на главном направлении». В 1952 году Лаврентьев готовит новый проект с уточненными параметрами плазмы.

Надо отметить, что Лаврентьев в тот момент думал, что его предложение по реактору тоже запоздало, и коллеги из ЛИПАНа разрабатывают целиком собственную идею, пришедшую им в головы независимо и раньше. О том, что сами коллеги придерживаются иного мнения, он узнал существенно позднее.

Ваш благодетель умер

26 июня 1953 года был арестован и вскоре расстрелян Берия. Сейчас можно только догадываться, имел ли он какие-то конкретные планы в отношении Олега Лаврентьева, но на его судьбе утрата столь влиятельного покровителя сказалась весьма ощутимо.

В университете мне не только перестали давать повышенную стипендию, но и «вывернули» плату за обучение за прошедший год, фактически оставив без средств к существованию, - рассказывал много лет спустя Олег Александрович. - Я пробился на прием к новому декану и в полной растерянности услышал: «Ваш благодетель умер. Чего же вы хотите?» Одновременно в ЛИПАНе был снят допуск, и я лишился постоянного пропуска в лабораторию, где по существующей ранее договоренности должен был проходить преддипломную практику, а впоследствии и работать. Если стипендию потом все-таки восстановили, то допуск в институт я так и не получил.

После университета Лаврентьева так и не взяли на работу в ЛИПАН, единственное в СССР место, где тогда занимались термоядерным синтезом. Сейчас невозможно, да и бессмысленно, пытаться понять, виновата ли в этом репутация «человека Берии», какие-то личные сложности или что-то еще.

Наш герой отправился в Харьков, где в ХФТИ как раз создавался отдел плазменных исследований. Там он и сосредоточился над своей любимой темой - электромагнитными ловушками плазмы. В 1958 году была пущена установка С1, наконец-то показавшая жизнеспособность идеи. Следующее десятилетие ознаменовалось строительством еще нескольких установок, после чего идеи Лаврентьева стали восприниматься в научном мире всерьез.

Харьковский физико-технический институт, современное фото

В семидесятых предполагалось построить и запустить большую установку «Юпитер», которая должны была стать наконец полноценным конкурентом токамаков и стеллараторов, построенным на других принципах. К сожалению, пока новинка проектировалась, обстановка вокруг изменилась. В целях экономии средств установка была уменьшена вдвое. Потребовалась переделка проекта и расчетов. К моменту ее завершения технику пришлось уменьшать еще на треть - и, конечно, все снова пересчитывать. Запущенный наконец образец был вполне работоспособен, но до полноценных масштабов было, конечно, далеко.

Олег Александрович Лаврентьев до конца своих дней (его не стало в 2011 году) продолжал активную исследовательскую работу, много публиковался и, в общем, вполне состоялся как ученый. Но главная идея его жизни пока так и осталась непроверенной.

Все уже успели обсудить одну из самых неприятных новостей декабря - успешные испытания Северной Кореей водородной бомбы. Ким Чен Ын не преминул намекнуть (прямо заявить) о том, что готов в любой момент превратить оружие из оборонительного в наступательное, чем вызывал небывалый ажиотаж в прессе всего мира. Впрочем, нашлись и оптимисты, заявившие о фальсификации испытаний: мол, и тень от чучхе не туда падает, и радиоактивных осадков что-то не видно. Но почему наличие у страны-агрессора водородной бомбы является столь значительным фактором для свободных стран, ведь даже ядерные боеголовки, которые у Северной Кореи имеются в достатке, еще никого так не пугали?

Что это

Водородная бомба, известная также как Hydrogen Bomb или HB - оружие невероятной разрушительной силы, чья мощность исчисляется мегатоннами в тротиловом эквиваленте. Принцип действия HB основан на энергии, которая вырабатывается при термоядерном синтезе ядер водорода - точно такой же процесс происходит на Солнце.

Чем водородная бомба отличается от атомной

Термоядерный синтез - процесс, который происходит во время детонации водородной бомбы - самый мощный тип доступной человечеству энергии. В мирных целях его использовать мы еще не научились, зато приспособили к военным. Эта термоядерная реакция, подобная той, что можно наблюдать на звездах, высвобождает невероятный поток энергии. В атомной же энергия получается от деления атомного ядра, поэтому взрыв атомной бомбы намного слабее.

Первое испытание


И Советский Союз вновь опередил многих участников гонки холодной войны. Первую водородную бомбу, изготовленную под руководством гениального Сахарова, испытали на секретном полигоне Семипалатинска - и они, мягко говоря, впечатлили не только ученых, но и западных лазутчиков.

Ударная волна

Прямое разрушительное воздействие водородной бомбы - сильнейшая, обладающая высокой интенсивностью ударная волна. Ее мощность зависит от размера самой бомбы и той высоты, на которой произошла детонация заряда.

Тепловой эффект

Водородная бомба всего в 20 мегатонн (размеры самой большой испытанной на данный момент бомбы - 58 мегатонн) создает огромное количество тепловой энергии: бетон плавился в радиусе пяти километров от места испытания снаряда. В девятикилометровом радиусе будет уничтожено все живое, не устоят ни техника, ни постройки. Диаметр воронки, образованной взрывом, превысит два километра, а глубина ее будет колебаться около пятидесяти метров.

Огненный шар

Самым зрелищным после взрыва покажется наблюдателям огромный огненный шар: пылающие бури, инициированные детонацией водородной бомбы, будут поддерживать себя сами, вовлекая в воронку все больше и больше горючего материала.

Радиационное заражение

Но самым опасным последствием взрыва станет, конечно же, радиационное заражение. Распад тяжелых элементов в бушующем огненном вихре наполнит атмосферу мельчайшими частицами радиоактивной пыли - она настолько легка, что попадая в атмосферу, может обогнуть земной шар два-три раза и только потом выпадет в виде осадков. Таким образом, один взрыв бомбы в 100 мегатонн может иметь последствия для всей планеты.

Царь-бомба


58 мегатонн - вот, сколько весила самая крупная водородная бомба, взорванная на полигоне архипелага Новая Земля. Ударная волна три раза обогнула земной шар, заставив противников СССР лишний раз увериться в огромной разрушительной силе этого оружия. Весельчак Хрущев на пленуме шутил, что бомбу не сделали больше только из опасений разбить стекла в Кремле.©