Теорема фалеса отрезок соединяющий основания. Теорема Фалеса. Полные уроки — Гипермаркет знаний

Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне.

Доказательство. Пусть А 1 , А 2 , А 3 - точки пересечения параллельных прямых с одной из сторон угла и А 2 лежит между А 1 и А 3 (рис.1).

Пусть B 1 В 2 , В 3 - соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если А 1 А 2 = A 2 A 3 , то В 1 В 2 = В 2 В 3 .

Проведем через точку В 2 прямую EF, параллельную прямой А 1 А 3 . По свойству параллелограмма А 1 А 2 = FB 2 , A 2 A 3 = B 2 E .

И так как А 1 А 2 = A 2 A 3 , то FB 2 = В 2 Е.

Треугольники B 2 B 1 F и В 2 В 3 Е равны по второму признаку. У них B 2 F = В 2 Е по доказанному. Углы при вершине В 2 равны как вертикальные, а углы B 2 FB 1 и B 2 EB 3 равны как внутренние накрест лежащие при параллельных А 1 В 1 и A 3 B 3 и секущей EF. Из равенства треугольников следует равенство сторон: В 1 В 2 = В 2 В 3 . Теорема доказана.

С использованием теоремы Фалеса устанавливается следующая теорема.

Теорема 2. Средняя линия треугольника параллельна третьей стороне и равна ее половине.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке 2 отрезок ED - средняя линия треугольника ABC.

ED - средняя линия треугольника ABC

Пример 1. Разделить данный отрезок на четыре равные части.

Решение. Пусть АВ - данный отрезок (рис.3), который надо разделить на 4 равные части.

Деление отрезка на четыре равные части

Для этого через точку А проведем произвольную полупрямую а и отложим на ней последовательно четыре равных между собой отрезка AC, CD, DE, ЕК.

Соединим точки В и К отрезком. Проведем через оставшиеся точки С, D, Е прямые, параллельные прямой ВК, так, чтобы они пересекли отрезок АВ.

Согласно теореме Фалеса отрезок АВ разделится на четыре равные части.

Пример 2. Диагональ прямоугольника равна а. Чему равен периметр четырехугольника, вершины которого являются серединами сторон прямоугольника?

Решение. Пусть условию задачи отвечает рисунок 4.

Тогда EF - средняя линия треугольника ABC и, значит, по теореме 2. $$ EF = \frac{1}{2}AC = \frac{a}{2} $$

Аналогично $$ HG = \frac{1}{2}AC = \frac{a}{2} , EH = \frac{1}{2}BD = \frac{a}{2} , FG = \frac{1}{2}BD = \frac{a}{2} $$ и, следовательно, периметр четырехугольника EFGH равен 2a.

Пример 3. Стороны треугольника равны 2 см, 3 см и 4 см, а вершины его - середины сторон другого треугольника. Найти периметр большого треугольника.

Решение. Пусть условию задачи отвечает рисунок 5.

Отрезки АВ, ВС, АС - средние линии треугольника DEF. Следовательно, согласно теореме 2 $$ AB = \frac{1}{2}EF\ \ ,\ \ BC = \frac{1}{2}DE\ \ ,\ \ AC = \frac{1}{2}DF $$ или $$ 2 = \frac{1}{2}EF\ \ ,\ \ 3 = \frac{1}{2}DE\ \ ,\ \ 4 = \frac{1}{2}DF $$ откуда $$ EF = 4\ \ ,\ \ DE = 6\ \ ,\ \ DF = 8 $$ и, значит, периметр треугольника DEF равен 18 см.

Пример 4. В прямоугольном треугольнике через середину его гипотенузы проведены прямые, параллельные его катетам. Найти периметр образовавшегося прямоугольника, если катеты треугольника равны 10 см и 8 см.

Решение. В треугольнике ABC (рис.6)

∠ А прямой, АВ = 10 см, АС = 8 см, KD и MD - средние линии треугольника ABC, откуда $$ KD = \frac{1}{2}AC = 4 см. \\ MD = \frac{1}{2}AB = 5 см. $$ Периметр прямоугольника К DMА равен 18 см.

Теорема 6.6 (теорема Фалеса). Если параллельные прямые, пересекающие стороны угла, отсекают на одной его стороне равные отрезки, то они отсекают равные отрезки и на другой его стороне (рис. 131).

Доказательство. Пусть А 1 , А 2 , А 3 — точки пересечения параллельных прямых с одной из сторон угла и А 2 лежит между А 1 и А 3 (рис. 131). Пусть В 1 , В 2 , В 3 — соответствующие точки пересечения этих прямых с другой стороной угла. Докажем, что если А 1 А 2 = А 2 Аз, то В 1 В 2 =В 2 В 3 .

Проведем через точку В 2 прямую EF, параллельную прямой A 1 A 3 . По свойству параллелограмма A 1 A 2 =FB 2 , А 2 А 3 = B 2 E. И так как А 1 А 2 =А 2 А 3 , то FВ 2 =В 2 Е.

Треугольники B 2 B 1 F и В 2 В 3 Е равны по второму признаку. У них B 2 F=B 2 E по доказанному. Углы при вершине В 2 равны как вертикальные, а углы B 2 FB 1 и В 2 ЕВ 3 равны как внутренние накрест лежащие при параллельных A 1 B 1 и А 3 В 3 и секущей EF.


Из равенства треугольников следует равенство сторон: В 1 В 2 =В 2 В 3 . Теорема доказана.

Замечание. В условии теоремы Фалеса вместо сторон угла можно взять любые две прямые, при этом заключение теоремы будет то же:

параллельные прямые, пересекающие две данные прямые и отсекающие на одной прямой равные отрезки, отсекают равные отрезки и на другой прямой.

Иногда теорема Фалеса будет применяться и в такой форме.

Задача (48). Разделите данный отрезок АВ на п равных частей.

Решение. Проведем из точки А полупрямую а, не лежащую на прямой АВ (рис. 132). Отложим на полупрямой а равные отрезки: АА 1 , А 1 А 2 , А 2 А 3 , .... А n - 1 А n . Соединим точки A n и В. Проведем через точки А 1 , А 2 , .... А n -1 прямые, параллельные прямой А n В. Они пересекают отрезок АВ в точках В 1 , B 2 , В n-1 , которые делят отрезок АВ на п равных отрезков (по теореме Фалеса).


А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Теорема планиметрии о параллельных и секущих.

Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том , что вписанный угол , опирающийся на диаметр окружности , является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла .

Формулировки [ | ]

Если на одной из двух прямых отложить последовательно несколько равных отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой равные отрезки.

Более общая формулировка, также называемая теорема о пропорциональных отрезках

Параллельные прямые отсекают на секущих пропорциональные отрезки :

A 1 A 2 B 1 B 2 = A 2 A 3 B 2 B 3 = A 1 A 3 B 1 B 3 . {\displaystyle {\frac {A_{1}A_{2}}{B_{1}B_{2}}}={\frac {A_{2}A_{3}}{B_{2}B_{3}}}={\frac {A_{1}A_{3}}{B_{1}B_{3}}}.}

Замечания [ | ]

  • Теорема Фалеса является частным случаем теоремы о пропорциональных отрезках, поскольку равные отрезки можно считать пропорциональными отрезками с коэффициентом пропорциональности, равным 1.

Доказательство в случае секущих

Рассмотрим вариант с несвязанными парами отрезков: пусть угол пересекают прямые A A 1 | | B B 1 | | C C 1 | | D D 1 {\displaystyle AA_{1}||BB_{1}||CC_{1}||DD_{1}} и при этом A B = C D {\displaystyle AB=CD} .

Доказательство в случае параллельных прямых

Проведем прямую BC . Углы ABC и BCD равны как внутренние накрест лежащие при параллельных прямых AB и CD и секущей BC , а углы ACB и CBD равны как внутренние накрест лежащие при параллельных прямых AC и BD и секущей BC . Тогда по второму признаку равенства треугольников треугольники ABC и DCB равны. Отсюда следует, что AC = BD и AB = CD .

Вариации и обобщения [ | ]

Обратная теорема [ | ]

Если в теореме Фалеса равные отрезки начинаются от вершины (часто в школьной литературе используется такая формулировка), то обратная теорема также окажется верной. Для пересекающихся секущих она формулируется так:

В обратной теореме Фалеса важно, что равные отрезки начинаются от вершины

Таким образом (см. рис.) из того, что C B 1 C A 1 = B 1 B 2 A 1 A 2 = … {\displaystyle {\frac {CB_{1}}{CA_{1}}}={\frac {B_{1}B_{2}}{A_{1}A_{2}}}=\ldots } , следует, что A 1 B 1 | | A 2 B 2 | | … {\displaystyle A_{1}B_{1}||A_{2}B_{2}||\ldots } .

Если секущие параллельны, то необходимо требовать равенство отрезков на обеих секущих между собой, иначе данное утверждение становится неверным (контрпример - трапеция, пересекаемая линией, проходящей через середины оснований).

Этой теоремой пользуются в навигации: столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется направление с одного судна на другое.

Лемма Соллертинского [ | ]

Следующее утверждение, двойственно к лемме Соллертинского :

Пусть f {\displaystyle f} - проективное соответствие между точками прямой l {\displaystyle l} и прямой m {\displaystyle m} . Тогда множество прямых будет множеством касательных к некоторому коническому сечению (возможно, вырожденному).

В случае теоремы Фалеса коникой будет бесконечно удалённая точка, соответствующая направлению параллельных прямых.

Это утверждение, в свою очередь, является предельным случаем следующего утверждения:

Пусть f {\displaystyle f} - проективное преобразование коники. Тогда огибающей множества прямых X f (X) {\displaystyle Xf(X)} будет коника (возможно, вырожденная).

| ]

Тема урока

Цели урока

  • Познакомиться с новыми определениями и вспомнить некоторые уже изученные.
  • Сформулировать и доказать свойства квадрата, доказать его свойства.
  • Научиться применять свойства фигур при решении задач.
  • Развивающие – развить внимание учащихся, усидчивость, настойчивость, логическое мышление, математическую речь.
  • Воспитательные - посредством урока воспитывать внимательное отношение друг к другу, прививать умение слушать товарищей, взаимовыручке, самостоятельность.

Задачи урока

  • Проверить умение учащихся решать задачи.

План урока

  1. Историческая справка.
  2. Фалес как математик и его труды.
  3. Полезно вспомнить.

Историческая справка

  • Теорема Фалеса до сих пор используется в морской навигации в качестве правила о том, что столкновение судов, двигающихся с постоянной скоростью, неизбежно, если сохраняется курс судов друг на друга.


  • Вне русскоязычной литературы теоремой Фалеса иногда называют другую теорему планиметрии, а именно, утверждение о том, что вписанный угол, опирающийся на диаметр окружности, является прямым. Открытие этой теоремы действительно приписывается Фалесу, о чём есть свидетельство Прокла.
  • Основы геометрии Фалес постигал в Египте.

Открытия и заслуги ее автора

А известно ли вам, что Фалес Милетский был одним из семи самых известных по тем временам, мудрецом Греции. Он основал Ионийскую школу. Идею, которую продвигал Фалес в этой школе, было единство всего сущего. Мудрец считал, что есть единое начало, от которого произошли все вещи.

Огромной заслугой Фалеса Милетского является создание научной геометрии. Этот великий учений сумел с египетского искусства измерения создать дедуктивную геометрию, базой которой есть общие основания.

Кроме огромных познаний в геометрии, Фалес еще и неплохо разбирался в астрономии. Эму первому удалось предсказать полное затмение Солнца. А ведь это происходило не в современном мире, а в далеком 585 году, еще до нашей эры.

Фалес Милетский был тем человеком, который сообразил, что север можно точно определить по созвездию Малой Медведицы. Но и это не было его последним открытием, так как он сумел в точности определить продолжительность года, разбить его на триста шестьдесят пять дней, а также установил время равноденствий.

Фалес на самом деле был всесторонне развитым и мудрым человеком. Кроме того, что он славился как прекрасный математик, физик, астроном, он еще и как настоящий метеоролог, смог довольно точно предсказать урожай оливок.

Но самое примечательное то, что Фалес никогда не ограничивался в своих познаниях только научно-теоретической областью, а всегда пытался закрепить доказательства своих теорий на практике. И самое интересное, то, что великий мудрец не сосредотачивался на какой-то одной области своих познаний, его интерес имел различные направленности.

Имя Фалеса стало нарицательным для мудреца уже тогда. Его важность и значимость для Греции была так велика, как для России имя Ломоносова. Конечно, его мудрость можно толковать по-разному. Но точно можно сказать, что ему были присущи и изобретательность, и практическая смекалка, и в какой-то степени отрешенность.

Фалес Милетский был отличным математиком, философом, астрономом, любил путешествовать, был купцом и предпринимателем, занимался торговлей, а также был неплохим инженером, дипломатом, провидцем и активно участвовал в политической жизни.

Он даже умудрился с помощью посоха и тени определить высоту пирамиды. А было это так. В один погожий солнечный день Фалес поставил свой посох на границе, где заканчивалась тень от пирамиды. Далее он дождался, когда длинна от тени его посоха сравнялась с его высотой, и замерил длину тени пирамиды. Вот так, казалось бы просто Фалес определил высоту пирамиды и доказал, что длина одной тени имеет отношение к длине другой тени, также, как и высота пирамиды относится к высоте посоха. Чем и поразил самого фараона Амасиса.

Благодаря Фалесу все известные в то время знания были переведены в область научного интереса. Он смог донести результаты до уровня, пригодного для научного потребления, выделив определенный комплекс понятий. И возможно с помощью Фалеса началось последующее развитие античной философии.

Теорема Фалеса играет одну важных ролей в математике. Она была известна не только в Древнем Египте и Вавилоне, но и в других странах и являлась почвой для развития математики. Да и в повседневной жизни, при строительстве зданий, сооружений, дорог и т.д., без теоремы Фалеса не обойтись.

Теорема Фалеса в культуре

Теорема Фалеса прославилась не только в математике, но ее приобщили еще и к культуре. Однажды аргентинская музыкальная группа Les Luthiers (исп.) на суд зрителей представила песню, которую посвятила известной теореме. Участники Les Luthiers в своем видеоклипе специально для этой песни предоставили доказательства для прямой теоремы для пропорциональных отрезков.

Вопросы

  1. Какие прямые называются параллельными?
  2. Где практически применяется теорема Фалеса?
  3. О чем гласит теорема Фалеса?

Список использованных источников

  1. Энциклопедия для детей. Т.11. Математика/Глав.ред.М.Д.Аксенова.-м.:Аванта+,2001.
  2. «Единый государственный экзамен 2006. Математика. Учебно-тренировочные материалы для подготовки учащихся/ Рособрнадзор, ИСОП – М.: Интеллект-Центр, 2006»
  3. Л. С. Атанасян, В. Ф. Бутузов, С. Б. Кадомцев, Э. Г. Позняк, И. И. Юдина «Геометрия, 7 – 9: учебник для общеобразовательных учреждений»
Предмети > Математика > Математика 8 класс


Образовательный журнал для школьников, воспитателей и учителей
2024 © chalt-1school.ru