Красота чисел. Математические константы в природе. Математическая константа

Число Архимеда

Чему равно: 3,1415926535… На сегодня просчитано до 1,24 трлн знаков после запятой

Когда праздновать день π - единственная константа, у которой есть свой праздник, и даже два. 14 марта, или 3.14, соответствует первым знакам в записи числа. А 22 июля, или 22/7 - не что иное, как грубое приближение π дробью. В университетах (например, на мехмате МГУ) предпочитают отмечать первую дату: она, в отличие от 22 июля, не попадает на каникулы

Что такое π? 3,14, число из школьных задач про окружности. И в то же время - одно из главных чисел в современной науке. Физикам π обычно нужно там, где об окружностях ни слова, - скажем, чтобы смоделировать солнечный ветер или взрыв. Число π встречается в каждом втором уравнении - можно открыть учебник теоретической физики наугад и выбрать любое. Если учебника нет, сойдет карта мира. Обычная река cо всеми ее изломами и изгибами в π раз длиннее, чем путь напрямик от ее устья к истоку.

В этом виновато само пространство: оно однородно и симметрично. Именно поэтому фронт взрывной волны - это шар, а от камней на воде остаются круги. Так что π здесь оказывается вполне уместным.

Но все это относится только к привычному евклидовому пространству, в котором мы все живем. Будь оно не­евклидовым, симметрия была бы другой. А в сильно искривленной Вселенной π уже не играет такой важной роли. Скажем, в геометрии Лобачевского окружность бывает вчетверо длиннее своего диаметра. Соответственно реки или взрывы «кривого космоса» потребовали бы других формул.

Числу π столько же лет, сколько всей математике: около 4 тысяч. Старейшие шумерские таблички приводят для него цифру 25/8, или 3,125. Ошибка - меньше процента. Вавилоняне абстрактной математикой особо не увлекались, так что π вывели опытным путем, просто измеряя длину окружностей. Кстати, это первый эксперимент по численному моделированию мира.

Самой изящной из арифметических формул для π больше 600 лет: π/4=1–1/3+1/5–1/7+… Простая арифметика помогает вычислить π, а само π - разобраться с глубинными свойствами арифметики. Отсюда его связь с вероятностями, простыми числами и многим другим: π, например, входит в известную «функцию ошибок», которая одинаково безотказно работает и в казино, и у социологов.

Есть даже «вероятностный» способ сосчитать саму константу. Во-первых, нужно запастись мешком иголок. Во-вторых, бросать их, не целясь, на пол, расчерченный мелом на полосы шириной в иглу. Потом, когда мешок опустеет, поделить число брошенных на количество тех, что пересекли меловые линии, - и получить π/2.

Хаос

Константа Фейгенбаума

Чему равно: 4,66920016…

Где применяется: В теории хаоса и катастроф, с помощью которых можно описывать любые явления - от размножения кишечной палочки до развития российской экономики

Кто и когда открыл: Американский физик Митчелл Фейгенбаум в 1975 году. В отличие от большинства других открывателей констант (Архимеда, например), он жив и преподает в престижном Рокфеллеровском университете

Когда и как праздновать день δ: Перед генеральной уборкой

Что общего у капусты брокколи, снежинок и елки? То, что их детали в миниатюре повторяют целое. Такие объекты, устроенные как матрешка, называют фракталами.

Фракталы возникают из беспорядка, как картинка в калейдоскопе. Математика Митчелла Фейгенбаума в 1975 году заинтересовали не сами узоры, а хаотические процессы, которые заставляют их появляться.

Фейгенбаум занимался демографией. Он доказал, что рождение и смерть людей тоже можно моделировать по фрактальным законам. Тут у него и появилась эта δ. Константа оказалась универсальной: она встречается в описании сотен других хаотических процессов, от аэродинамики до биологии.

С фрактала Мандельброта (см. рис.) началось повсеместное увлечение этими объектами. В теории хаоса он играет примерно ту же роль, что и круг в обычной геометрии, а число δ фактически задает его форму. Получается, что эта константа - то же π, только для хаоса.

Время

Число Непера

Чему равно: 2,718281828…

Кто и когда открыл: Джон Непер, шотландский математик, в 1618 году. Самого числа он не упоминал, зато выстроил на его основе свои таблицы логарифмов. Одновременно кандидатами в авторы константы считаются Якоб Бернулли, Лейбниц, Гюйгенс и Эйлер. Достоверно известно только то, что символ e взялся из фамилии последнего

Когда и как праздновать день e: После возврата банковского кредита

Число е - тоже своего рода двойник π. Если π отвечает за пространство, то е - за время, и тоже проявляет себя почти всюду. Скажем, радиоактивность полония-210 уменьшается в е раз за средний срок жизни одного атома, а раковина моллюска Nautilus - это график степеней е, обернутый вокруг оси.

Число е встречается и там, где природа заведомо ни при чем. Банк, обещающий 1% в год, за 100 лет увеличит вклад примерно в е раз. Для 0,1% и 1000 лет результат будет еще ближе к константе. Якоб Бернулли, знаток и теоретик азартных игр, вывел е именно так - рассуждая о том, сколько зарабатывают ростовщики.

Как и π, е - трансцендентное число. Говоря проще, его нельзя выразить через дроби и корни. Есть гипотеза, что у таких чисел в бесконечном «хвосте» после запятой встречаются все комбинации цифр, какие только возможны. Например, там можно обнаружить и текст этой статьи, записанный двоичным кодом.

Свет

Постоянная тонкой структуры

Чему равно: 1/137,0369990…

Кто и когда открыл: Немецкий физик Арнольд Зоммерфельд, аспирантами которого были сразу два нобелевских лауреата - Гейзенберг и Паули. В 1916 году, еще до появления настоящей квантовой механики, Зоммерфельд ввел константу в рядовой статье про «тонкую структуру» спектра атома водорода. Роль константы вскоре переосмыслили, а вот название осталось прежним

Когда праздновать день α: В День электрика

Скорость света - величина исключительная. Быстрее, показал Эйнштейн, не могут двигаться ни тело, ни сигнал - будь то частица, гравитационная волна или звук внутри звезд.

Вроде бы ясно, что это - закон вселенской важности. И все-таки скорость света - не фундаментальная константа. Проблема в том, что ее нечем измерить. Километры в час не годятся: километр определен как расстояние, которое свет проходит за 1/299792,458 секунды, то есть сам выражается через скорость света. Платиновый эталон метра - тоже не выход, потому что скорость света входит и в уравнения, которые описывают платину на микроуровне. Словом, если скорость света без лишнего шума изменится во всей Вселенной, человечество об этом не узнает.

Вот тут-то на помощь физикам и приходит величина, связывающая скорость света с атомными свойствами. Константа α - это деленная на скорость света «скорость» электрона в атоме водорода. Она безразмерна, то есть не привязана ни к метрам, ни к секундам, ни к каким-либо еще единицам.

Кроме скорости света в формулу для α входят также заряд электрона и константа Планка, мера «квантовости» мира. С обеими постоянными связана та же проблема - их не с чем сверить. А вместе, в виде α, они являют собой что-то вроде залога постоянства Вселенной.

Можно задаться вопросом, не менялась ли α c начала времен. Физики всерьез допускают «дефект», достигавший когда-то миллионных долей от нынешней величины. Достигни он 4%, человечества не было бы, потому что внутри звезд прекратился бы термоядерный синтез углерода, главного элемента живой материи.

Добавка к реальности

Мнимая единица

Чему равно: √-1

Кто и когда открыл: Итальянский математик Джероламо Кардано, друг Леонардо да Винчи, в 1545 году. Карданный вал назван так именно в его честь. По одной из версий, свое открытие Кардано украл у Никколо Тартальи, картографа и придворного библиотекаря

Когда праздновать день i: Мартобря 86 числа

Число i ни константой, ни даже настоящим числом назвать нельзя. Учебники описывают его как величину, которая, будучи возведенной в квадрат, дает минус один. Другими словами, это сторона квадрата с отрицательной площадью. В реальности такого не бывает. Но иногда из нереального тоже можно извлечь пользу.

История открытия этой постоянной такова. Математик Джероламо Кардано, решая уравнения с кубами, ввел мнимую единицу. Это был просто вспомогательный трюк - в итоговых ответах i не было: результаты, которые его содержали, выбраковывались. Но позже, присмот­ревшись к своему «мусору», математики попробовали пустить его в дело: умножать и делить обычные числа на мнимую единицу, складывать результаты друг с другом и подставлять в новые формулы. Так родилась теория комплексных чисел.

Минус в том, что «реальное» с «нереальным» нельзя сравнивать: сказать, что больше - мнимая единица или 1 - не получится. С другой стороны, неразрешимых уравнений, если воспользоваться комплексными числами, практически не остается. Поэтому при сложных расчетах удобнее работать с ними и только в самом конце «вычищать» ответы. Например, чтобы расшифровать томограмму мозга, без i не обойтись.

Физики именно так обращаются с полями и волнами. Можно даже считать, что все они существуют в комплексном пространстве, а то, что мы видим, - только тень «настоящих» процессов. Квантовая механика, где и атом, и человек - волны, делает такую трактовку еще убедительнее.

Число i позволяет свести в одной формуле главные математические константы и действия. Формула выглядит так: e πi +1 = 0, и некоторые говорят, что такой сжатый свод правил математики можно отправлять инопланетянам, чтобы убедить их в нашей разумности.

Микромир

Масса протона

Чему равно: 1836,152…

Кто и когда открыл: Эрнест Резерфорд, физик родом из Новой Зеландии, в 1918 году. За 10 лет до этого получил Нобелевскую премию по химии за изучение радиоактивности: Резерфорду принадлежат понятие «период полураспада» и сами уравнения, описывающие распад изотопов

Когда и как праздновать день μ: В День борьбы с лишним весом, если такой введут - это соотношение масс двух базовых элементарных частиц, протона и электрона. Протон - не что иное, как ядро атома водорода, самого распространенного элемента во Вселенной.

Как и в случае скорости света, важна не сама величина, а ее безразмерный эквивалент, не привязанный к каким-то единицам, то есть во сколько раз масса протона больше массы электрона. Получается примерно 1836. Без такой разницы в «весовых категориях» заряженных частиц не было бы ни молекул, ни твердых тел. Впрочем, атомы бы остались, но вели бы себя совсем по-другому.

Как и α, μ подозревают в медленной эволюции. Физики изучали свет квазаров, дошедший до нас через 12 млрд лет, и обнаружили, что протоны со временем тяжелеют: разница между доисторическим и современным значениями μ составила 0,012%.

Темная материя

Космологическая константа

Чему равно: 110-²³ г/м3

Кто и когда открыл: Альберт Эйнштейн в 1915 году. Сам Эйнштейн называл ее открытие своим «главным промахом»

Когда и как праздновать день Λ: Ежесекундно: Λ, согласно определению, присутствует всегда и везде

Космологическая константа - самая туманная из всех величин, какими оперируют астрономы. С одной стороны, ученые не до конца уверены в ее существовании, с другой - готовы объяснять с ее помощью, откуда взялась большая часть массы-энергии во Вселенной.

Можно сказать, что Λ дополняет константу Хаббла. Они соотносятся как скорость и ускорение. Если Н описывает равномерное расширение Вселенной, то Λ - непрерывно ускоряющийся рост. Первым ее ввел в уравнения общей теории относительности Эйнштейн, когда заподозрил у себя ошибку. Его формулы указывали, что космос либо расширяется, либо сжимается, а в это было сложно поверить. Новый член понадобился, чтобы устранить выводы, казавшиеся неправдоподобными. После открытия Хаббла Эйнштейн от своей константы отказался.

Вторым рождением, в 90-х годах прошлого века, постоянная обязана идее темной энергии, «спрятанной» в каждом кубическом сантиметре пространства. Как следовало из наблюдений, энергия неясной природы должна «расталкивать» пространство изнутри. Грубо говоря, это микроскопический Большой взрыв, происходящий каждую секунду и повсеместно. Плотность темной энергии - это и есть Λ.

Гипотезу подтвердили наблюдения за реликтовым излучением. Это доисторические волны, родившиеся в первые секунды существования космоса. Астрономы считают их чем-то вроде рентгена, просвечивающего Вселенную насквозь. «Рентгенограмма» и показала, что темной энергии в мире 74% - больше, чем всего остального. Однако так как она «размазана» по всему космосу, получается всего 110-²³ грамма на кубический метр.

Большой взрыв

Постоянная Хаббла

Чему равно: 77 км/с /МПс

Кто и когда открыл: Эдвин Хаббл, отец-основатель всей современной космологии, в 1929 году. Чуть раньше, в 1925-м, он первым доказал существование других галактик за пределами Млечного пути. Соавтор первой статьи, где упоминается константа Хаббла, - некто Милтон Хьюмасон, человек без высшего образования, работавший в обсерватории на правах лаборанта. Хьюмасону принадлежит первый снимок Плутона, тогда еще не открытой планеты, из-за дефекта фотопластинки оставленный без внимания

Когда и как праздновать день H: 0 января. С этого несущест­вующего числа астрономические календари начинают отсчет Нового года. Как и о самом моменте Большого взрыва, о событиях 0 января известно мало, что делает праздник вдвойне уместным

Главная константа космологии - мера скорости, с которой расширяется Вселенная в результате Большого взрыва. И сама идея, и постоянная H восходят к выводам Эдвина Хаббла. Галактики в любом месте Вселенной разбегаются друг от друга и делают это тем быстрее, чем больше расстояние между ними. Знаменитая константа - просто коэффициент, на который умножают дистанцию, чтобы получить скорость. Со временем она меняется, но довольно медленно.

Единица, деленная на H, дает 13,8 млрд лет - время, прошедшее с момента Большого взрыва. Эту цифру первым получил сам Хаббл. Как доказали позднее, метод Хаббла был не совсем верен, но все равно он ошибся меньше чем на процент, если сравнивать с современными данными. Ошибка отца-основателя космологии состояла в том, что он считал число Н постоянным с начала времен.

Сферу вокруг Земли радиусом 13,8 млрд световых лет - скорость света, деленная на константу Хаббла, - называют хаббловской сферой. Галактики за ее границей должны «убегать» от нас со сверхсветовой скоростью. Противоречия с теорией относительности здесь нет: стоит подобрать правильную систему координат в искривленном пространстве-времени, и проблема превышения скорости сразу исчезает. Поэтому за хаббловской сферой видимая Вселенная не заканчивается, ее радиус примерно втрое больше.

Гравитация

Планковская масса

Чему равно: 21,76… мкг

Где работает: Физика микромира

Кто и когда открыл: Макс Планк, создатель квантовой механики, в 1899 году. Планковская масса - это всего-навсего одна из набора величин, предложенных Планком в качестве «сис­темы мер и весов» для микромира. Определение, упоминающее черные дыры, - и сама теория гравитации - появились несколькими десятилетиями позже

Обычная река cо всеми ее изломами и изгибами в π раз длиннее, чем путь напрямик от ее устья к истоку

Когда и как праздновать день m p: В день открытия Большого адронного коллайдера: микроскопические черные дыры собираются получать именно там

Якоб Бернулли, знаток и теоретик азартных игр, вывел e, рассуждая о том, сколько зарабатывают ростовщики

Подбирать явлениям теорию по размеру - популярный в XX веке подход. Если элементарная частица требует квантовой механики, то нейтронная звезда - уже теории относительности. Ущербность такого отношения к миру была понятна с самого начала, но единой теории всего так и не создали. Пока удалось примирить только три из четырех фундаментальных видов взаимодействия - электромагнитные, сильные и слабые. Гравитация все еще остается в стороне.

Поправка Эйнштейна и есть плотность темной материи, которая расталкивает космос изнутри

Планковская масса - условная граница между «большим» и «малым», то есть как раз между теорией гравитации и квантовой механикой. Столько должна весить черная дыра, размеры которой совпадают с длиной волны, отвечающей ей как микрообъекту. Парадокс заключается в том, что астрофизика трактует границу черной дыры как строгий барьер, за который не могут проникнуть ни информация, ни свет, ни вещество. А с квантовой точки зрения волновой объект будет равномерно «размазан» по пространству - и барьер вместе с ним.

Планкова масса - это масса личинки комара. Но пока гравита­ционный коллапс комару не грозит, квантовые парадоксы его не коснутся

mp - одна из немногих единиц в квантовой механике, которыми стоит измерять объекты в нашем мире. Столько может весить личинка комара. Другое дело, что пока гравитационный коллапс комару не грозит, квантовые парадоксы его не коснутся.

Бесконечность

Число Грэхема

Чему равно:

Кто и когда открыл: Рональд Грэхем и Брюс Ротшильд
в 1971 году. Статья была опубликована под двумя фамилиями, но популяризаторы решили сэкономить бумагу и оставили только первую

Когда и как праздновать день G: Очень нескоро, зато очень долго

Ключевая для этой конструкции операция - стрелки Кнута. 33 - это три в третьей степени. 33 - это три, возведенное в три, которое в свою очередь возведено в третью степень, то есть 3 27 , или 7625597484987. Три стрелки - это уже число 37625597484987, где тройка в лестнице степенных показателей повторяется именно столько - 7625597484987 - раз. Это уже больше числа атомов во Вселенной: тех всего 3 168 . А в формуле для числа Грэхема с такой же скоростью растет даже не сам результат, а количество стрелок на каждой стадии его подсчета.

Константа появилась в абстрактной комбинаторной задаче и оставила позади все величины, связанные с нынешними или будущими размерами Вселенной, планетами, атомами и звездами. Чем, похоже, лишний раз подтвердила несерьезность космоса на фоне математики, средствами которой тот может быть осмыслен.

Иллюстрации: Варвара Аляй-Акатьева

Второй период развития математики известен в литературе как период математики постоянных величин (или элементарной математики). Он начался в VII в. до н. э. и закончился в XVII в. н. э. Основным достижением математической мысли, характеризующим начало этого периода, было возникновение и развитие понятия о доказательстве. Греческие математики сознательно стремились расположить математические доказательства в такие цепочки, чтобы переход от одного звена к следующему не оставлял никакого места сомнениям и заставлял всех с ним согласиться.

К сожалению, до нашего времени не дошли тексты, по которым можно было бы судить о возникновении этого «дедуктивного метода». Традиция называет первым из философов, применившим в математике доказательства, греческого ученого Фалеса из Милета (города в Малой Азии), жившего в VII-VI вв. до н. э. По дошедшим до нас сведениям, Фалес доказал некоторые простейшие геометрические утверждения:

равенство углов при основании равнобедренного треугольника, равенство вертикальных углов, один из признаков равенства треугольников, равенство частей, на которые диаметр разбивает круг, и т. д.

Созданный Фалесом метод логического доказательства математических утверждений был развит и усовершенствован учеными пифагорейской школы в период между концом VI в. и серединой V в. до н. э., которые доказали, в частности, утверждение, называемое теперь теоремой Пифагора (формулировка этого утверждения была известна еще вавилонянам).

Пифагорейцы предприняли первую попытку свести геометрию и алгебру того времени к арифметике. Они считали, что «все есть число», понимая под словом «число» лишь натуральные числа. В частности, они были долгое время убеждены, что длины любых отрезков соизмеримы друг с другом, а потому для измерения любых величин достаточно рациональных чисел.

Поворотным пунктом было открытие пифагорейцами того, что диагональ квадрата несоизмерима с его стороной. Это открытие, сделанное на основе теоремы Пифагора, показало несостоятельность попытки свести всю геометрию к натуральным числам. Анализ полученного доказательства привел к исследованию начальных вопросов теории чисел (четности и нечетности простых чисел, разложения чисел на простые множители, свойств взаимно простых чисел и т. д.).

После работ Пифагора стало ясно, что не все величины выражаются рациональными числами. Поскольку понятие иррационального числа не могло быть создано в ту эпоху, греческие математики предприняли иную попытку - обосновать всю математику на основе геометрических понятий. Они стали развивать геометрическую алгебру, истолковывая, например, сложение величин, как сложение отрезков, а умножение - как построение прямоугольника с заданными сторонами. При этом говорили о равенстве отрезков, а не о равенстве их длин, поскольку длина отрезка выражается числом, а числа были изгнаны из древнегреческой математики. Следы такого подхода к алгебре сохранились в современных терминах квадрат числа, куб числа, геометрическое среднее, геометрическая прогрессия и т. д.

Древнегреческие математики продвинулись очень далеко. Они провели, например, классификацию квадратичных иррациональностей, открыли все виды правильных многогранников, вывели формулы для объемов многих тел, исследовали разнообразные кривые линии (эллипс, гиперболу, параболу, спирали). Выдающуюся роль в формировании математики как теоретической науки сыграла знаменитая книга Евклида «Начала», представлявшая синтез и систематизацию основных результатов древнегреческой математической мысли и длительное время служившая источником знаний и образцом строгого математического изложения.

Книга Евклида является первой из дошедших до нашего времени попыток аксиоматического изложения математической дисциплины. Хотя во времена Евклида не вставал еще вопрос об описании логических средств, применяемых для извлечения содержательных следствий из аксиом, в системе Евклида была уже четко проведена основная идея получения всего основного содержания геометрической теории чисто дедуктивным путем из небольшого числа утверждений - аксиом, истинность которых представлялась наглядно очевидной.

В XIX в. было показано, что список аксиом Евклида неполон и многие теоремы он доказывал, привлекая утверждения, не вошедшие в этот список. Не было у Евклида и аксиом порядка. Признаки же равенства треугольников доказывались на основе понятия наложения фигур, т. е., по сути дела, на основе идеи движения, относящейся скорее к механике, чем к математике.

В течение двух тысячелетий основное внимание критиков и комментаторов Евклида было направлено на аксиому о параллельных, поскольку предполагалось, что ее можно доказать на основе остальных аксиом. Лишь открытие в начале XIX в. неевклидовой геометрии показало безнадежность попыток такого доказательства.

На формулировку аксиом Евклида сильное влияние оказали длившиеся долгое время споры между сторонниками и противниками атомизма. Атомисты (Демокрит, Левкипп) утверждали, что материя состоит из неделимых атомов, причем существует предел делимости пространства (т. е. что и пространство состоит из неделимых далее частиц). Их противники полагали, что пространство безгранично делимо и, потому недопустимо считать, что линии состоят из точек, поскольку точки не имеют ни частей, ни размеров, а линии имеют определенную длину.

Хотя атомисты достигли больших успехов в геометрии (например, Демокрит вывел формулу объема пирамиды), их попытки дать логическое обоснование геометрии не увенчались успехом. Дело в том, что из атомистических воззрений вытекала соизмеримость любых двух отрезков, а это противоречило известной уже в то время теореме о несоизмеримости стороны и диагонали квадрата. В то же время Евклиду удалось построить логически замкнутую систему геометрии, в которой считалось, что любой отрезок безгранично делим, а потому не существует неделимых элементов пространства.

Книга Евклида подвела также итог длительному развитию идеи бесконечности, приведшему к формированию, с одной стороны, понятия о бесконечном ряде натуральных чисел, а с другой - понятия о безгранично делимых геометрических фигурах (отрезках, кругах и т. д.). Однако бесконечность понималась лишь как потенциальная возможность продолжать определенный процесс (прибавления единицы к натуральному числу, деления пополам отрезка и т. д.). Идея об актуальной (законченной) бесконечности изгонялась из работ Евклида и его последователей (Архимеда, Аполлония и др.). Эта идея была дискредитирована в результате открытия греческим философом Зеноном затруднений, к которым вело ее использование. Например, Зенон «доказывал», что стрела не может пролететь свой путь, поскольку она должна сначала пролететь половину пути, а до этого - половину половины и т. д. - значит, он никогда не сдвинется с места.

Поэтому формулы для объема шара и конуса, площади круга и т. д. излагались без применения предельного перехода, без разложения на бесконечно малые части, хотя для отыскания этих формул математики применяли «запрещенные приемы». Архимед решил такие сложные для тогдашней математики задачи, как отыскание объема сегмента параболоида вращения и площади сектора архимедовой спирали.

Недостатком геометрического подхода к математике было то, что он препятствовал развитию алгебры (хотя греки и умели, например, в геометрической форме решать квадратные уравнения) - невозможно было представить геометрически четвертую и высшие степени длины, а, кроме того, нельзя было складывать выражения разных степеней: эта сумма геометрического смысла не имела.

По той же причине в греческой математике не было отрицательных чисел и нуля, иррациональных чисел и буквенного исчисления. Лишь в III в. н. э. в работах александрийского математика Диофанта появляются зачатки буквенного исчисления. Но этим работам не суждено было иметь продолжения в греческой математике, так как после принятия христианства в V в. н. э. языческая культура, составной частью которой была математика, оказалась разрушенной, а в 529 г. император Юстиниан под страхом смертной казни запретил занятия математикой.

Центр математических исследований переместился на Восток - в Индию, Китай и арабский мир. Индийские математики ввели нуль и отрицательные числа, проводили исследования по комбинаторике (Ариабхатта, V в. н. э.). Основной заслугой арабских математиков (аль-Беруни, Омар Хайям, Гиясэддин Джемшид, IX-XIII вв. н. э.) следует считать развитие тригонометрии (в связи с астрономическими исследованиями) и, особенно, создание новой области математики - алгебры.

Алгебра, которую теперь рассматривают как общее учение о формальных действиях и их свойствах, появилась у арабов как наука о решении уравнений. Само слово «алгебра» арабского происхождения и означало «восстановление», т. е. перенос отрицательных слагаемых в другую часть уравнений.

С начала XIII в. вновь возрождаются математические исследования в Европе. Но лишь в XVI в. были получены первые научные результаты, превзошедшие достижения греков и арабов, - итальянские математики дель Ферро, Тарталья, Кардано, Феррари и др. вывели формулы для решения уравнений третьей и четвертой степеней. Одновременно с этим формируется система алгебраических обозначений, словесная алгебра постепенно заменяется буквенной. В начале XVII в. в трудах французских и английских математиков (Виета, Декарта, Гэрриота) завершается развитие алгебраической символики, создаются правила буквенного исчисления. Одновременно с развитием символики происходит расширение понятия о числе: еще в середине XVI века в математике окончательно утверждаются отрицательные числа, а вскоре за тем появляются и комплексные числа (хотя они долгое время не находили признания, поскольку не допускали истолкования известными в то время средствами). При этом оказалось, что правила буквенной алгебры в равной мере применимы к числам любого вида.

Важнейшую роль сыграли работы итальянского ученого Бомбелли (XVI в.) и французского математика Р. Декарта (XVII в.), которые фактически ввели идею действительного числа, освободив тем самым алгебру от несвойственной ей геометрической одежды. Пользуясь этим, Декарт, в отличие от греческих математиков, сводивших алгебраические проблемы к геометрии, начал алгебраически решать геометрические задачи. Этим было положено начало аналитической геометрии.

    E математическая константа, основание натурального логарифма, иррациональное и трансцендентное число. Иногда число e называют числом Эйлера (не путать с т. н. числами Эйлера I рода) или числом Непера. Обозначается строчной латинской буквой «e».… … Википедия

    Для улучшения этой статьи желательно?: Добавить иллюстрации. Дополнить статью (статья слишком короткая либо содержит лишь словарное определение). В 1919 году … Википедия

    Постоянная Эйлера Маскерони или постоянная Эйлера математическая константа, определяемая как предел разности между частичной суммой гармонического ряда и натуральным логарифмом числа: Константа введена Леонардом Эйлером в 1735, который предложил… … Википедия

    Константа: Постоянная Математическая Физическая Константа (в программировании) Константа диссоциации кислоты Константа равновесия Константа скорости реакции Константа (Остаться в живых) См. также Констанция Констанций Константин Констант… … Википедия

    В этой статье рассматривается математический базис общей теории относительности. Общая теория относительности … Википедия

    В этой статье рассматривается математический базис общей теории относительности. Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи … Википедия

    Теория деформируемого пластичного твердого тела, в к рой исследуются задачи, состоящие в определении полей вектора перемещений и(х, t).или вектора скоростей v(x,t), тензора деформации eij(х, t).или скоростей деформации vij(x, t).и тензора… … Математическая энциклопедия

    Магический, или волшебный квадрат это квадратная таблица, заполненная n2 числами таким образом, что сумма чисел в каждой строке, каждом столбце и на обеих диагоналях одинакова. Если в квадрате равны суммы чисел только в строках и столбцах, то он … Википедия