Формула квадратичной функции параболы. Свойства функции $y=x2$

Выберем на плоскости прямоугольную систему координат и будем откладывать на оси абсцисс значения аргумента х , а на оси ординат - значения функции у = f (х) .

Графиком функции y = f(x) называется множество всех точек, у которых абсциссы принадлежат области определения функции, а ординаты равны соответствующим значениям функции.

Другими словами, график функции y = f (х) - это множество всех точек плоскости, координаты х, у которых удовлетворяют соотношению y = f(x) .



На рис. 45 и 46 приведены графики функций у = 2х + 1 и у = х 2 - 2х .

Строго говоря, следует различать график функции (точное математическое определение которого было дано выше) и начерченную кривую, которая всегда дает лишь более или менее точный эскиз графика (да и то, как правило, не всего графика, а лишь его части, расположенного в конечной части плоскости). В дальнейшем, однако, мы обычно будем говорить «график», а не «эскиз графика».

С помощью графика можно находить значение функции в точке. Именно, если точка х = а принадлежит области определения функции y = f(x) , то для нахождения числа f(а) (т. е. значения функции в точке х = а ) следует поступить так. Нужно через точку с абсциссой х = а провести прямую, параллельную оси ординат; эта прямая пересечет график функции y = f(x) в одной точке; ордината этой точки и будет, в силу определения графика, равна f(а) (рис. 47).



Например, для функции f(х) = х 2 - 2x с помощью графика (рис. 46) находим f(-1) = 3, f(0) = 0, f(1) = -l, f(2) = 0 и т. д.

График функции наглядно иллюстрирует поведение и свойства функции. Например, из рассмотрения рис. 46 ясно, что функция у = х 2 - 2х принимает положительные значения при х < 0 и при х > 2 , отрицательные - при 0 < x < 2; наименьшее значение функция у = х 2 - 2х принимает при х = 1 .

Для построения графика функции f(x) нужно найти все точки плоскости, координаты х , у которых удовлетворяют уравнению y = f(x) . В большинстве случаев это сделать невозможно, так как таких точек бесконечно много. Поэтому график функции изображают приблизительно - с большей или меньшей точностью. Самым простым является метод построения графика по нескольким точкам. Он состоит в том, что аргументу х придают конечное число значений - скажем, х 1 , х 2 , x 3 ,..., х k и составляют таблицу, в которую входят выбранные значения функции.

Таблица выглядит следующим образом:



Составив такую таблицу, мы можем наметить несколько точек графика функции y = f(x) . Затем, соединяя эти точки плавной линией, мы и получаем приблизительный вид графика функции y = f(x).

Следует, однако, заметить, что метод построения графика по нескольким точкам очень ненадежен. В самом деле поведение графика между намеченными точками и поведение его вне отрезка между крайними из взятых точек остается неизвестным.

Пример 1 . Для построения графика функции y = f(x) некто составил таблицу значений аргумента и функции:




Соответствующие пять точек показаны на рис. 48.



На основании расположения этих точек он сделал вывод, что график функции представляет собой прямую (показанную на рис. 48 пунктиром). Можно ли считать этот вывод надежным? Если нет дополнительных соображений, подтверждающих этот вывод, его вряд ли можно считать надежным. надежным.

Для обоснования своего утверждения рассмотрим функцию

.

Вычисления показывают, что значения этой функции в точках -2, -1, 0, 1, 2 как раз описываются приведенной выше таблицей. Однако график этой функции вовсе не является прямой линией (он показан на рис. 49). Другим примером может служить функция y = x + l + sinπx; ее значения тоже описываются приведенной выше таблицей.

Эти примеры показывают, что в «чистом» виде метод построения графика по нескольким точкам ненадежен. Поэтому для построения графика заданной функции,как правило, поступают следующим образом. Сначала изучают свойства данной функции, с помощью которых можно построить эскиз графика. Затем, вычисляя значения функции в нескольких точках (выбор которых зависит от установленных свойств функции), находят соответствующие точки графика. И, наконец, через построенные точки проводят кривую, используя свойства данной функции.

Некоторые (наиболее простые и часто используемые) свойства функций, применяемые для нахождения эскиза графика, мы рассмотрим позже, а сейчас разберем некоторые часто применяемые способы построения графиков.


График функции у = |f(x)|.

Нередко приходится строить график функции y = |f(x) |, где f(х) - заданная функция. Напомним, как это делается. По определению абсолютной величины числа можно написать

Это значит, что график функции y =|f(x)| можно получить из графика, функции y = f(x) следующим образом: все точки графика функции у = f(х) , у которых ординаты неотрицательны, следует оставить без изменения; далее, вместо точек графика функции y = f(x) , имеющих отрицательные координаты, следует построить соответствующие точки графика функции у = -f(x) (т. е. часть графика функции
y = f(x) , которая лежит ниже оси х, следует симметрично отразить относительно оси х ).



Пример 2. Построить график функции у = |х|.

Берем график функции у = х (рис. 50, а) и часть этого графика при х < 0 (лежащую под осью х ) симметрично отражаем относительно оси х . В результате мы и получаем график функции у = |х| (рис. 50, б).

Пример 3 . Построить график функции y = |x 2 - 2x|.


Сначала построим график функции y = x 2 - 2x. График этой функции - парабола, ветви которой направлены вверх, вершина параболы имеет координаты (1; -1), ее график пересекает ось абсцисс в точках 0 и 2. На промежутке (0; 2) фукция принимает отрицательные значения, поэтому именно эту часть графика симметрично отразим относительно оси абсцисс. На рисунке 51 построен график функции у = |х 2 -2х| , исходя из графика функции у = х 2 - 2x

График функции y = f(x) + g(x)

Рассмотрим задачу построения графика функции y = f(x) + g(x). если заданы графики функций y = f(x) и y = g(x) .

Заметим, что областью определения функции y = |f(x) + g(х)| является множество всех тех значений х, для которых определены обе функции y = f{x) и у = g(х), т. е. эта область определения представляет собой пересечение областей определения, функций f{x) и g{x).

Пусть точки (х 0 , y 1 ) и (х 0 , у 2 ) соответственно принадлежат графикам функций y = f{x) и y = g(х) , т. е. y 1 = f(x 0), y 2 = g(х 0). Тогда точка (x0;. y1 + y2) принадлежит графику функции у = f(х) + g(х) (ибо f(х 0) + g(x 0 ) = y1 +y2 ),. причем любая точка графика функции y = f(x) + g(x) может быть получена таким образом. Следовательно, график функции у = f(х) + g(x) можно получить из графиков функций y = f(x) . и y = g(х) заменой каждой точки (х n , у 1) графика функции y = f(x) точкой (х n , y 1 + y 2), где у 2 = g(x n ), т. е. сдвигом каждой точки (х n , у 1 ) графика функции y = f(x) вдоль оси у на величину y 1 = g(х n ). При этом рассматриваются только такие точки х n для которых определены обе функции y = f(x) и y = g(x) .

Такой метод построения графика функции y = f(x) + g(х ) называется сложением графиков функций y = f(x) и y = g(x)

Пример 4 . На рисунке методом сложения графиков построен график функции
y = x + sinx .

При построении графика функции y = x + sinx мы полагали, что f(x) = x, а g(x) = sinx. Для построения графика функции выберем точки с aбциссами -1,5π, -, -0,5, 0, 0,5,, 1,5, 2. Значения f(x) = x, g(x) = sinx, y = x + sinx вычислим в выбранных точках и результаты поместим в таблице.


Ранее мы изучали другие функции, например линейную, напомним ее стандартный вид:

отсюда очевидное принципиальное отличие - в линейной функции х стоит в первой степени, а в той новой функции, к изучению которой мы приступаем, х стоит во второй степени.

Напомним, что графиком линейной функции является прямая линия, а графиком функции , как мы увидим, является кривая, называемая параболой.

Начнем с того, что выясним, откуда появилась формула . Объяснение таково: если нам задан квадрат со стороной а , то площадь его мы можем вычислить так:

Если мы будем менять длину стороны квадрата, то и его площадь будет изменяться.

Итак, приведена одна из причин, по которой изучается функция

Напомним, что переменная х - это независимая переменная, или аргумент, в физической интерпретации это может быть, например, время. Расстояние это наоборот зависимая переменная, оно зависит от времени. Зависимой переменной или функцией называется переменная у .

Это закон соответствия, согласно которому каждому значению х ставится в соответствие единственное значение у .

Любой закон соответствия должен удовлетворять требованию единственности от аргумента к функции. В физической интерпретации это выглядит достаточно понятно на примере зависимости расстояния от времени: в каждый момент времени мы находимся на каком-то конкретном расстоянии от начального пункта, и невозможно одновременно в момент времени t находится и в 10 и в 20 километрах от начала пути.

В то же время каждое значение функции может достигаться при нескольких значениях аргумента.

Итак, нам нужно построить график функции , для этого составить таблицу. Потом по графику исследовать функцию и ее свойства. Но уже до построения графика по виду функции мы можем кое-что сказать о ее свойствах: очевидно, что у не может принимать отрицательных значений, так как

Итак, составим таблицу:

Рис. 1

По графику несложно отметить следующие свойства:

Ось у - это ось симметрии графика;

Вершина параболы - точка (0; 0);

Мы видим, что функция принимает только неотрицательные значения;

На промежутке, где функция убывает, а на промежутке, где функция возрастает;

Наименьшее значение функция приобретает в вершине, ;

Наибольшего значения функции не существует;

Пример 1

Условие:

Решение:

Поскольку х по условию изменяется на конкретном промежутке, можем сказать о функции, что она возрастает и изменяется на промежутке . Функция имеет на этом промежутке минимальное значение и максимальное значение

Рис. 2. График функции y = x 2 , x ∈

Пример 2

Условие: Найти наибольшее и наименьшее значение функции:

Решение:

х изменяется на промежутке , значит у убывает на промежутке пока и возрастает на промежутке пока .

Итак, пределы изменения х , а пределы изменения у , а, значит, на данном промежутке существует и минимальное значение функции , и максимальное

Рис. 3. График функции y = x 2 , x ∈ [-3; 2]

Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.

Как построить параболу? Существует несколько способов построения графика квадратичной функции. Каждый из них имеет свои плюсы и минусы. Рассмотрим два способа.

Начнём с построения графика квадратичной функции вида y=x²+bx+c и y= -x²+bx+c.

Пример.

Построить график функции y=x²+2x-3.

Решение:

y=x²+2x-3 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

От вершины (-1;-4) строим график параболы y=x²(как от начала координат. Вместо (0;0) — вершина (-1;-4). От (-1;-4) идём вправо на 1 единицу и вверх на 1 единицу, затем влево на 1 и вверх на 1; далее: 2 — вправо, 4 — вверх, 2- влево, 4 — вверх; 3 — вправо, 9 — вверх, 3 — влево, 9 — вверх. Если этих 7 точек недостаточно, далее — 4 вправо, 16 — вверх и т. д.).

График квадратичной функции y= -x²+bx+c — парабола, ветви которой направлены вниз. Для построения графика ищем координаты вершины и от неё строим параболу y= -x².

Пример.

Построить график функции y= -x²+2x+8.

Решение:

y= -x²+2x+8 — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

От вершины строим параболу y= -x² (1 — вправо, 1- вниз; 1 — влево, 1 — вниз; 2 — вправо, 4 — вниз; 2 — влево, 4 — вниз и т. д.):

Этот способ позволяет построить параболу быстро и не вызывает затруднений, если вы умеете строить графики функций y=x² и y= -x². Недостаток: если координаты вершины — дробные числа, строить график не очень удобно. Если требуется знать точные значения точек пересечения графика с осью Ох, придется дополнительно решить уравнение x²+bx+c=0 (или —x²+bx+c=0), даже если эти точки непосредственно можно определить по рисунку.

Другой способ построения параболы — по точкам, то есть можно найти несколько точек графика и через них провести параболу (с учетом того, что прямая x=хₒ является её осью симметрии). Обычно для этого берут вершину параболы, точки пересечения графика с осями координат и 1-2 дополнительные точки.

Построить график функции y=x²+5x+4.

Решение:

y=x²+5x+4 — квадратичная функция. График — парабола ветвями вверх. Координаты вершины параболы

то есть вершина параболы — точка (-2,5; -2,25).

Ищем . В точке пересечения с осью Ох y=0: x²+5x+4=0. Корни квадратного уравнения х1=-1, х2=-4, то есть получили две точки графике (-1; 0) и (-4; 0).

В точке пересечения графика с осью Оy х=0: y=0²+5∙0+4=4. Получили точку (0; 4).

Для уточнения графика можно найти дополнительную точку. Возьмем х=1, тогда y=1²+5∙1+4=10, то есть еще одна точка графика — (1; 10). Отмечаем эти точки на координатной плоскости. С учетом симметрии параболы относительно прямой, проходящей через её вершину, отметим еще две точки: (-5; 6) и (-6; 10) и проведем через них параболу:

Построить график функции y= -x²-3x.

Решение:

y= -x²-3x — квадратичная функция. График — парабола ветвями вниз. Координаты вершины параболы

Вершина (-1,5; 2,25) — первая точка параболы.

В точках пересечения графика с осью абсцисс y=0, то есть решаем уравнение -x²-3x=0. Его корни — х=0 и х=-3, то есть (0;0) и (-3; 0) — еще две точки графика. Точка (о; 0) является также точкой пересечения параболы с осью ординат.

При х=1 y=-1²-3∙1=-4, то есть (1; -4) — дополнительная точка для построения графика.

Построение параболы по точкам — более трудоёмкий, по сравнению с первым, способ. Если парабола не пересекает ось Oх, дополнительных точек потребуется больше.

Прежде чем продолжить построение графиков квадратичных функций вида y=ax²+bx+c, рассмотрим построение графиков функций с помощью геометрических преобразований. Графики функций вида y=x²+c также удобнее всего строить, используя одно из таких преобразований — параллельный перенос.

Рубрика: |

Ранее мы изучали другие функции, например линейную, напомним ее стандартный вид:

отсюда очевидное принципиальное отличие - в линейной функции х стоит в первой степени, а в той новой функции, к изучению которой мы приступаем, х стоит во второй степени.

Напомним, что графиком линейной функции является прямая линия, а графиком функции , как мы увидим, является кривая, называемая параболой.

Начнем с того, что выясним, откуда появилась формула . Объяснение таково: если нам задан квадрат со стороной а , то площадь его мы можем вычислить так:

Если мы будем менять длину стороны квадрата, то и его площадь будет изменяться.

Итак, приведена одна из причин, по которой изучается функция

Напомним, что переменная х - это независимая переменная, или аргумент, в физической интерпретации это может быть, например, время. Расстояние это наоборот зависимая переменная, оно зависит от времени. Зависимой переменной или функцией называется переменная у .

Это закон соответствия, согласно которому каждому значению х ставится в соответствие единственное значение у .

Любой закон соответствия должен удовлетворять требованию единственности от аргумента к функции. В физической интерпретации это выглядит достаточно понятно на примере зависимости расстояния от времени: в каждый момент времени мы находимся на каком-то конкретном расстоянии от начального пункта, и невозможно одновременно в момент времени t находится и в 10 и в 20 километрах от начала пути.

В то же время каждое значение функции может достигаться при нескольких значениях аргумента.

Итак, нам нужно построить график функции , для этого составить таблицу. Потом по графику исследовать функцию и ее свойства. Но уже до построения графика по виду функции мы можем кое-что сказать о ее свойствах: очевидно, что у не может принимать отрицательных значений, так как

Итак, составим таблицу:

Рис. 1

По графику несложно отметить следующие свойства:

Ось у - это ось симметрии графика;

Вершина параболы - точка (0; 0);

Мы видим, что функция принимает только неотрицательные значения;

На промежутке, где функция убывает, а на промежутке, где функция возрастает;

Наименьшее значение функция приобретает в вершине, ;

Наибольшего значения функции не существует;

Пример 1

Условие:

Решение:

Поскольку х по условию изменяется на конкретном промежутке, можем сказать о функции, что она возрастает и изменяется на промежутке . Функция имеет на этом промежутке минимальное значение и максимальное значение

Рис. 2. График функции y = x 2 , x ∈

Пример 2

Условие: Найти наибольшее и наименьшее значение функции:

Решение:

х изменяется на промежутке , значит у убывает на промежутке пока и возрастает на промежутке пока .

Итак, пределы изменения х , а пределы изменения у , а, значит, на данном промежутке существует и минимальное значение функции , и максимальное

Рис. 3. График функции y = x 2 , x ∈ [-3; 2]

Проиллюстрируем тот факт, что одно и то же значение функции может достигаться при нескольких значениях аргумента.

Урок на тему: "График и свойства функции $y=x^2$. Примеры построения графиков"

Дополнительные материалы
Уважаемые пользователи, не забывайте оставлять свои комментарии, отзывы, пожелания. Все материалы проверены антивирусной программой.

Обучающие пособия и тренажеры в интернет-магазине "Интеграл" для 7 класса
Интерактивный тренажер "Правила и упражнения по алгебре"
Электронная рабочая тетрадь по алгебре для 7 класса, онлайн версия

Функция – это зависимость одной переменной от другой.

График функции – графическое изображение функции.

Свойства функции

  • Область определения функции – все значения, которые может принимать независимая переменная.
  • Область значений функции – все значения, которые может принимать зависимая переменная.
  • Нули функции – значение независимой переменной, при которой зависимая переменная равна 0.
  • Минимальное значение функции – минимальное значение зависимой переменной.
  • Максимальное значение функции – максимальное значение зависимой переменной.

Свойства функции $y=x^2$

Давайте опишем свойства данной функции:

1. x – независимая переменная, y – зависимая переменная.

2. Область определения: очевидно, что для любого значения аргумента (x) существует значение функции (y). Соответственно область определения данной функции вся числовая прямая.

3. Область значений: y не может быть меньше 0, так как квадрат любого числа есть число положительное.

4. Если x=0, то и y=0.

5. Обратите внимание, что для противоположных значений аргумента функция принимает одинаковое значение. Для пары чисел x = 1 и x = -1 значение функции будет 1, т.е. y = 1. Для пары чисел x = 2 и x = – 2; y = 4 и т.д.
$y = x^2 =(-x)^2$.

График функции $y=x^2$

Внимательно посмотрим на формулу y = x 2 и попытаемся описать словами примерный вид будущего графика.

1. Так как y ≥ 0, то весь график не может располагаться ниже оси OX.

2. График симметричен относительно оси OY. Нам достаточно построить график для положительных значений x, а затем зеркально отразить его для отрицательных значений x.

Найдем несколько значений y:


Построим эти точки (см. рис. 1).

Если мы попробуем соединить их пунктирной линией, как показано на рис. 1 , то некоторые значения функции не попадут на эти линии, например, точки A (x = 0,5; y = 0,25) и B (x=2,5; y=6,25). Даже если мы построим очень много точек и соединим их маленькими прямыми отрезками, всегда найдутся значения y, не попадающие на эти отрезки. Поэтому точки надо соединять плавной кривой линией (см. рис. 2).




Теперь осталось зеркально отразить график для отрицательных значений x (см. рис. 3). Такая кривая называется параболой. Точка О (0;0) называется вершиной параболы. Симметричные кривые называются ветвями параболы.


Примеры

I. Дизайнеру надо покрасить часть стены дома в форме квадрата со сторонами 2,7 метра. Специальная краска для стен продается в фасовке из расчета одна банка на 1 м 2 . Не проводя вычисления, выясни, сколько банок краски надо купить, что бы после окрашивания не осталось лишних не распечатанных банок.

Решение:
1. Построим параболу.
2. Найдем на параболе точку А, у которой координата x=2,7 (см. рис. 4).
3. Мы видим, что в этой точке значение функции больше 7, но меньше 8. Значит, дизайнеру потребуется минимум 8 банок краски.


II. Построить график функции у= (х + 1) 2 .

Найдем несколько значений y.


Построим эти точки и прямую x= -1, параллельную оси OY. Очевидно, что построенные точки симметричны относительно этой прямой. В результате у нас получится такая же парабола, только смещенная влево по оси OX (см. рис.5).