Классификация методов математического моделирования. Локализация области мимики на основе математической модели активных контурных моделей

Мастер – класс

« Использование моделирования в обучении математике»

Цель:

Содействовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

Задачи:

Создать условия для организации работы по освоению педагогами учебных моделей и определению возможностей и эффективности их применения в процессе обучении математике.

    Организационный этап.

Создание психологической готовности участников мастер-класса к совместной работе.

– Уважаемые коллеги, здравствуйте! Я рада приветствовать вас на своём мастер-классе.

Тема моего мастер-класса «Использование моделирования в обучении математике ».

Перед вами лежит таблица-фиксация знаний, заполните, пожалуйста, вторую графу «Знаю» по данной теме и отложите.

Хочу узнать

Моделирование

Моя цель: Способствовать систематизации знаний учителей о моделировании и подготовке педагогов к использованию учебных моделей в образовательном процессе по математике.

А Ваша цель? (ответы)

2. Актуальность.

- Как вы думаете, почему именно математика так широко представлена в программе начального образования?

Математика как учебный предмет в начальной школе призвана максимально развивать личность младшего школьника, способствовать становлению его самостоятельности в учебно-познавательной деятельности, поэтому она широко представлена в программе начального образования: 4 часа в неделю или 536 часов за курс начальной школы. Задача учителя начальной школы – сформировать у всех детей базовый уровень математических представлений и способов деятельности, необходимых для социальной адаптации в обществе. Решение этой задачи часто вызывает большие трудности, так как ни один из математических объектов в реальной действительности не существует, а мышление детей младшего школьного возраста по преимуществу наглядно-образное, способности даже к простейшему осмыслению математического материала весьма различны.

Поэтому современные требования к формированию умственных действий на уроках математики требуют применения наиболее эффективных методов и приёмов обучения. Одним из них является метод моделирования.

Метод моделирования стал одним из основных методов научного исследования. Этот метод в отличие от других является всеобщим, используется во всех науках, на всех этапах научного исследования. Он обладает огромной эвристической силой, позволяет свести изучение сложного к простому, невидимого и неощутимого – к видимому и ощутимому, незнакомого – к знакомому, т.е. сделать сложное явление реальной действительности доступным для тщательного и всестороннего изучения. В связи с этим применение моделей и моделирования в обучении, по мнению большинства ученых теоретиков, приобретает особое значение для повышения теоретического уровня педагогической науки и практики.

Необходимость овладения младшими школьниками методом моделирования как методом познания в процессе обучения можно обосновать с разных позиций.

- Как вы думаете с каких?

Во-первых, как показывают эксперименты, введение в содержание обучения понятий модели и моделирования существенно меняет отношение учащихся к учебному предмету, делает их учебную деятельность более осмысленной и более продуктивной.

Во-вторых, целенаправленное и систематическое обучение методу моделирования приближает младших школьников к методам научного познания, обеспечивает их интеллектуальное развитие.

- В определении моделирования вставьте пропущенные слова.

«Моделирование – это метод опосредованного познания, при котором изучается не интересующий нас объект, а его заместитель (модель ), находящийся в некотором объективном соответствии с познавательным объектом, способный замещать его в определённых отношениях и дающий при этом новую информацию об объекте» (Л. М. Фридман) Слайд 2

При введение моделирования в содержание обучения математике важно, чтобы учащиеся сами овладели методом моделирования, научились строить и преобразовывать модели, отражая различные отношения и закономерности, сами изучали какие-либо объекты, явления с помощью моделирования.

Когда учащиеся, решая практическую математическую задачу, понимают, что она представляет собой знаковую модель некоторой реальной ситуации, составляют последовательность различных ее моделей, затем изучают (решают) эти модели и, наконец, переводят полученное решение на язык исходной задачи, то тем самым школьники овладевают методом моделирования.

    Знакомство с видами моделей.

- Какие виды моделей вы знаете и применяете на практике? (при затруднении предлагается выбрать из предложенных вариантов: вербальные, словесные, иллюстрационные, предметные, эвристические, схематические, математические, геометрические)

Виды моделей: вербальные, предметные, схематические, математические.

Можно выделить четыре модели, которые используются при работе над задачей на уроках математики: предметные, вербальные, схематические, математические.

Составляется кластер. (Сначала самостоятельно, а в процессе работы изменяется, пополняется, исправляются недочёты.)

Примерами предметных моделей могут быть сюжетные иллюстрации, отдельные предметы или их изображения. Слайд 3

К группе вербальных моделей мы относим в первую очередь сам текст задачи, кроме того, различные виды кратких записей текста задачи. Для некоторых текстовых задач более удобной формой вербальной модели является таблица. Слайд 4

Коля – 3

Таня - ?, на 2больше

Всего - ?

Схематические модели служат для визуального представления задачной ситуации, но здесь используются не конкретные предметы и их изображения, а различного рода условные обозначения, которые заменяют реальные предметы(например, круги, квадраты, отрезки, точки и т.п.).

Наиболее распространённые в начальной школе модели этого вида – схематические иллюстрации и схематические чертежи. Слайд 6

Под математическими моделями надо понимать математические выражения или равенства (3+4, 3+5=8). Слайд 7

Математическое выражение (например, запись вида 5+3);

Математическое равенство (например, запись вида 5+3=8).

(Раздаточный материал для групп «Виды моделей»)

4.Действия которые можно проводить с моделями.

Чтобы процесс переходов от одной модели к другой при решении текстовой задачи был продуманным, хорошо организованным и эффективным, важно разработать комплекс дидактических заданий по работе с учебными моделями.

- Давайте уточним, какие действия можно проводить с моделями?

1)Задания на соотнесение моделей: Слайд 8

при выполнении заданий на соотнесение моделей ребёнок должен определить, соответствуют ли друг другу предложенные для сравнения модели, и объяснить, почему соответствие есть или отсутствует. Например, дан рисунок, схема и равенство. Ученик рассказывает, почему схема подходит к рисунку и к равенству. Слайд 9

2) Задания на построение модели:

самостоятельно построить на парте из геометрических фигур схему, соответствующую рисунку, тексту задачи или математической записи, составить математическое выражение, соответствующее предложенному рисунку, схеме или тексту задачи. Слайд 10

3) Задания на выбор модели:

при выполнении заданий этой группы дети из нескольких предложенных вариантов выбирают тот, который соответствует другой модели. Слайд 11

4) Примеры заданий на изменение модели:

изменить предложенную схему так, чтобы новая схема соответствовала сюжетной иллюстрации, тексту задачи, числовому выражению или равенству;

изменить предложенный текст задачи так, чтобы новый текст соответствовал сюжетной иллюстрации, схеме, числовому выражению. Слайд 12

Многие задания в учебнике можно дифференцировать.

Использование учебных моделей позволяет сделать более доступным для ребёнка восприятие и понимание текста задачи, поскольку модели помогают визуализировать скрытые при непосредственном наблюдении связи и отношения, представленные в тексте задачи.

Благодаря возможности наглядно представлять наиболее существенные характеристики изучаемого объекта, модель служит весьма продуктивным видом визуализации.

Поскольку мышление детей младшего школьного возраста по преимуществу наглядно-образное, опора на модели делает возможным приобщение учеников к некоторым (пусть самым простым) теоретическим обобщениям. Это весьма значимо на первых шагах обучения решению задачи. Однако для того, чтобы работа с моделями приводила к максимальной «отдаче», их применение должно быть последовательным и систематическим.

Слайд 13 (пустой)

(Раздаточный материал « Группы заданий, ориентированных на выполнение одного из следующих действий:….»

5. Группы заданий, ориентированных на выполнение одного из следующих действий:

- задания на соотнесение моделей:

1. Соотнесение предметной и вербальной моделей.

2. Соотнесение предметной и схематической моделей. Подходит ли схема к рисунку?

3.Соотнесение предметной и математической моделей.

Верно ли составлен пример к рисунку?

4.Соотнесениевербальной и математической моделей.

Верно ли Ваня решил задачу?

5.Соотнесение вербальной и схематической моделей.

Проверь, верно ли Петя составил схему к задаче.

6.Соотнесение схематической и математической моделей.

Верно ли составлен пример к схеме

- выбор модели:

1. Задания на выбор модели при сравнении предметных и вербальных моделей.

Какая краткая запись подходит к рисунку?

2. Задания на выбор модели при сравнении предметных и схематических моделей.

Выбери схему к рисунку.

3. Задания на выбор модели при сравнении предметных и математических моделей.

Какой пример подходит к рисунку?

4.Задания на выбор модели при сравнении вербальных и математических моделей.

Выбери верное решение задачи .

5. Задания на выбор модели при сравнении вербальных и схематических моделей.

Выбери схему

6. Задания на выбор модели при сравнении схематических и математических моделей.

Какой пример подходит к схеме?

- изменение модели:

1. Задание на изменение модели в паре « Предметная модель – вербальная модель»

Измени рисунок так, чтобы он соответствовал тексту задачи. Или наоборот.

Измени краткую запись, чтобы она подходила к рисунку

2. Задание на изменение модели в паре « Предметная модель – схематическая модель»

Дополни схему

3. Задание на изменение модели в паре « Предметная модель – математическая модель»

Петя записал пример к рисунку. Часть примера не видна. Дополни запись.

4. Задание на изменение модели в паре « Вербальная модель – математическая модель»

Измените текст задачи, чтобы она решалась так:

5. Задание на изменение модели в паре « Вербальная модель – схематическая модель »

Исправь схему

6. . Задание на изменение модели в паре « Схематическая модель – математическая модель»

Катя сделала схему, исправь её ошибку.

- Дополни условие и вопрос, чтобы задача решалась сложением.

- Измени схему так, чтобы показать её с помощью действия вычитания

- построение модели:

1.Задание на построение модели в паре « Предметная модель – вербальная модель»

Составь задачу по рисунку или сделай рисунок к тексту задачи (краткой записи)

2. Задание на построение модели в паре « Предметная модель – схематическая модель»

Составь схему к предложенному рисунку или, наоборот, сделай рисунок к предложенной схеме

3.Задание на построение модели в паре « Предметная модель – математическая модель»

Составь пример к рисунку

4.Задание на построение модели в паре «Вербальная модель – математическая модель»

Составь задачу, которая решается так 5. Задание на построение модели в паре « Вербальная модель – схематическая модель»

Составь задачу по схеме

Составь пример по схеме или схему к выражению

6. Работа в группах:

Задания для работы в группах

1) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

2) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и вербальной моделей при работе над задачей.

а) Подходит ли схема к рисунку?

б)Проверь, верно ли Катя составила схему к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли краткая запись к рисунку?

д) Верно ли составлен пример к рисунку?

е) Верно ли составлен пример к схеме?

3) Из предложенного ряда дидактических заданий выберите задание на соотнесение предметной и схематической моделей при работе над задачей.

а) Верно ли составлен пример к схеме?

б) Подходит ли рисунок к задаче?

в) Проверь, верно ли Сергей решил задачу.

г) Подходит ли схема к рисунку?

д) Верно ли составлен пример к рисунку?

е) Проверь, верно ли Катя составила схему к задаче?

1) Определите задание на выбор модели . Слайд 14

    Определите задание на соотнесение моделей . Слайд 15

3) Определите задание на построение моделей. Слайд 16

7.Методические варианты использования моделей. Слайд 17

Методические варианты использования моделей: репродуктивно-наглядный, продуктивно-наглядный, репродуктивно-практический, продуктивно-практический. Рассмотрим примеры использование моделей для поиска решения текстовой задачи: « У Коли 3 яблока, а у Лены 2 яблока. Сколько яблок у детей вместе?»

Вариант 1. Репродуктивно-наглядный

Учитель демонстрирует модель (на доске, наборном полотне) и на её основе даёт словесное объяснение о способе решения задачи. При этом объяснение выступает репродуктивной передачей информации от учителя к детям.

Ребята, я располагаю на наборном полотне 3 кружка слева, потому что у нас в задаче сказано, что у Коли было 3 яблока, и 2 кружка справа - столько яблок, по условию задачи у Лены. В задаче нужно узнать, сколько всего яблок у детей, поэтому я придвину кружки друг к другу. Значит, эта задача решается с помощью действия сложения. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 2. Продуктивно-наглядный

Учитель демонстрирует модель (на доске, на наборном полотне) и в процессе её построения проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи. Здесь используется продуктивная форма получения знания.

Пример объяснения решения задачи:

Дети, сейчас я покажу слева яблоки Коли, а справа яблоки Лены. Сколько кружков я должна поставить слева? Почему? (После ответов детей учитель располагает на наборном полотне 3 кружка слева.) Сколько кружков нужно расположить на наборном полотне справа? Почему? (После ответов детей учитель располагает на наборном полотне 2 кружка справа.) Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? (После ответов детей учитель придвигает одни кружки к другим). Каким действием решается задача? Почему? Как запишем решение задачи?

Вариант 3. Репродуктивно-практический

Учитель строит модель (на доске, на наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В ходе построения модели учитель даёт словесное объяснение репродуктивного характера о способе решения задачи.

Пример объяснения решения задачи:

Дети, сейчас я на наборном полотне поставлю 3 кружка слева, потому что, по условию задачи, у Коли было 3 яблока, а 2 кружка справа – столько яблок у Лены. Положите вместе со мной 3 кружка на парте слева, а 2 кружка на парте справа. В задаче нужно узнать, сколько всего яблок у детей. Поэтому я придвину кружки друг к другу и вы тоже на партах придвиньте свои кружки друг к другу. Так как мы с вами придвигаем кружки, задача решается сложением. Давайте запишем вместе решение задачи: 3+2=5.

Вариант 4. Продуктивно - практический

Учитель строит модель (на доске, наборном полотне) и одновременно просит детей построить такую же модель на парте или в тетради. В процессе построения модели учитель проводит с детьми беседу эвристического характера с тем, чтобы дети сами «открыли» способ решения задачи.

Пример объяснения решения задачи

Дети, давайте покажем слева яблоки Коли, а справа яблоки Лены. Сколько кружков мы должны показать слева? Почему? Давайте вместе сделаем это: я поставлю кружки слева на наборном полотне, а вы положите их слева у себя на парте.

Сколько кружков мы должны показать справа? Почему? Давайте вместе сделаем это: я поставлю кружки справа на наборном полотне, а вы положите их справа у себя на парте. Что нужно сделать, чтобы показать, что мы собираем вместе яблоки Коли и Лены? Правильно, нужно придвинуть кружки друг к другу. Давайте вместе сделаем это: я на наборном полотне, а вы у себя на партах. Что мы сделали, чтобы найти ответ к задаче? Значит, каким действием решается задача? Как запишем решение задачи?

При объяснении трудного для детей материала рекомендуется чаще использовать продуктивно – практический вариант моделирования, поскольку при этом обеспечивается эвристическая форма передачи информации («субъективное открытие знания») и практическая деятельность ребёнка по построению и преобразованию моделей, что особенно важно для ребёнка со средними или слабыми математическими способностями.

8. Конструкции текста задачи: Слайд 18

(Раздаточный материал для учителей)

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный вопросительным предложением; наиболее часто встречающаяся конструкция текста.

    Условие выражено в повествовательной форме, за ним следует вопрос, выраженный повествовательным предложением.

    Часть условия выражена в повествовательной форме в начале текста, затем вопросительное предложение, включающее вопрос и часть условия.

    Часть условия выражена в повествовательной форме, затем следует также повествовательное предложение, включающее вопрос и часть условия.

    Текст задачи представляет одно сложное вопросительное предложение, в котором сначала стоит вопрос задачи, затем условие.

9. Задания для работы в группах:

1 . Каждой группе подобрать из учебника или составить задачу 2,3,4,5 конструкций.

2. Практикум « Виды работ над задачей»

1) на нахождение остатка (опорное слово: осталось)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1(блок « Задания на изменение модели»)

    изменить конструкцию задачи

2)на нахождение суммы (опорное слово: стало)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 2 (блок « Задания на соотнесение модели»)

    изменить конструкцию задачи

3)на нахождение разности (опорное слово: на сколько)

    составить задачу

    4 вида моделей

    из групп заданий выбрать 1 (блок « Задания на построение модели»)

    изменить конструкцию задачи

10. Практикум «Разработка вспомогательных моделей, которые используются при решении задач в начальной школе» Объединение моделей в систему.

1 тип схем

a b

2 тип схем

?, на б/м

a b

3 тип схем

Было –

Стало --

a b

4 тип схем

Было –

Осталось --

a

b c

5 тип схем

a c

Рефлексия мастер-класса

Возьмите карточку с таблицей-фиксацией, если есть, чем дополнить, впишите в третий столбик. Кто может зачитать данные своей таблицы? (Ответы участников)

Метод « Чемодан, Корзина, Мясорубка»

ВВЕДЕНИЕ

Объекты материального мира сложны и многообразны. Отражение всех их свойств в создаваемых, изучаемых и используемых образах весьма затруднительно, да и не нужно. Важно, чтобы образ объекта содержал черты, наиболее важные для его использования Методом моделирования называется замена объекта оригинала объектом-заместителем, обладающим определенным сходством с оригиналом, с целью получения новой информации об оригинале. Моделью называется объект-заместитель объекта-оригинала, предназначенный для получения информации об оригинале.

Математические модели относятся к символьным моделям и представляют собой описание объектов в виде математических символов, формул, выражений. При наличии достаточно точной математической модели можно путем математических расчетов прогнозировать результаты функционирования объекта при различных условиях, выбрать из множества возможных вариантов тот, который дает наилучшие результаты.



В данной работе приведены виды классификации математических методов моделирования и описаны некоторые методы:

Линейное программирование - это методы математического моделирования, которые служат для поиска оптимального варианта распределения ограниченных ресурсов между конкурирующими работами.

Имитационное моделирование. Цель имитационного моделирования состоит в воспроизведении поведения исследуемой системы на основе результатов анализа наиболее существенных взаимосвязей между её элементами или другими словами - разработке симулятора исследуемой предметной области для проведения различных экспериментов.


Классификация методов математического моделирования

Ввиду разнообразия применяемых математических моделей, их общая классификация затруднена. В литературе обычно приводят классификации, в основу которых положены различные подходы и принципы.

По принадлежности к иерархическому уровню математические модели делятся на модели микроуровня, макроуровня, метауровня. Математические модели на микроуровне процесса отражают физические процессы, протекающие, например, при резании металлов. Они описывают процессы на уровне перехода (прохода).

Математические модели на макроуровне процесса описывают технологические процессы.

Математические модели на метауровне процесса описывают технологические системы (участки, цехи, предприятие в целом).

По характеру отображаемых свойств объекта модели можно классифицировать на структурные и функциональные

Модель структурная, – если она представима структурой данных или структурами данных и отношениями между ними В свою очередь, структурная модель может быть иерархической или сетевой.

Модель иерархическая (древовидная), – если представима некоторой иерархической структурой (деревом); например, для решения задачи нахождения маршрута в дереве поиска можно построить древовидную модель, приведенную на рисунке 1.

Рисунок 1 - Модель иерархической структуры.


Модель сетевая, – если она представима некоторой сетевой структурой. Например, строительство нового дома включает различные операции которые можно представить в виде сетевой модели, приведенной на рисунке 2.

Рисунок 2 - Модель сетевой структуры.

Модель функциональная, – если она представима в виде системы функциональных соотношений. Например, закон Ньютона и модель производства товаров –функциональные.

По способу представления свойств объекта модели делятся на аналитические, численные, алгоритмические и имитационные.

Аналитические математические модели представляют собой явные математические выражения выходных параметров как функций от параметров входных и внутренних и имеют единственные решения при любых начальных условиях. Например, процесс резания (точения) с точки зрения действующих сил представляет собой аналитическую модель. Также квадратное уравнение, имеющее одно или несколько решений, будет аналитической моделью. Модель будет численной, если она имеет решения при конкретных начальных условиях (дифференциальные, интегральные уравнения).

Модель алгоритмическая, если она описана некоторым алгоритмом или комплексом алгоритмов, определяющим ее функционирование и развитие. Введение данного типа моделей (действительно, кажется, что любая модель может быть представлена алгоритмом её исследования) вполне обосновано, т. к. не все модели могут быть исследованы или реализованы алгоритмически. Например, моделью вычисления суммы бесконечного убывающего ряда чисел может служить алгоритм вычисления конечной суммы ряда до некоторой заданной степени точности. Алгоритмической моделью корня квадратного из числа Х может служить алгоритм вычисления его приближенного, сколь угодно точного значения по известной рекуррентной формуле.

Модель имитационная, – если она предназначена для испытания или изучения возможных путей развития и поведения объекта путем варьирования некоторых или всех параметров модели, например модель экономической системы производства товаров двух видов. Такую модель можно использовать в качестве имитационной с целью определения и варьирования общей стоимости в зависимости от тех или иных значений объемов производимых товаров.

По способу получения модели делятся на теоретические и эмпирические Теоретические математические модели создаются в результате исследования объектов (процессов) на теоретическом уровне. Например, существуют выражения для сил резания, полученные на основе обобщения физических законов. Но они неприемлемы для практического использования, т. к. очень громоздки и не совсем адаптированы к реальным процессам. Эмпирические математические модели создаются в результате проведения экспериментов (изучения внешних проявлений свойств объекта с помощью измерения его параметров на входе и выходе) и обработки их результатов методами математической статистики.

По форме представления свойств объекта модели делятся на логические, теоретико-множественные и графовые. Модель логическая, если она представима предикатами, логическими функциями, например, совокупность двух логических функций может служить математической моделью одноразрядного сумматора. Модель теоретико-множественная, если она представима с помощью некоторых множеств и отношений принадлежности к ним и между ними. Модель графовая, – если она представима графом или графами и отношениями между ними.

По степени устойчивости . модели могут быть разделены на устойчивые и неустойчивые. Устойчивой является такая система, которая, будучи выведена из своего исходного состояния, стремится к нему. Она может колебаться некоторое время около исходной точки, подобно обычному маятнику, приведенному в движение, но возмущения в ней со временем затухают и исчезают В неустойчивой системе, находящейся первоначально в состоянии покоя, возникшее возмущение усиливается, вызывая увеличение значений соответствующих переменных или их колебания с возрастающей амплитудой

По отношению к внешним факторам модели могут быть разделены на открытые и замкнутые. Замкнутой моделью является модель,которая функционирует вне связи с внешними (экзогенными) переменными. В замкнутой модели изменения значений переменных во времени определяются внутренним взаимодействием самих переменных. Замкнутая модель может выявить поведение системы без ввода внешней переменной. Пример: информационные системы с обратной связью являются замкнутыми системами. Это самонастраивающиеся системы, и их характеристики вытекают из внутренней структуры и взаимодействий, которые отражают ввод внешней информации. Модель, связанная с внешними (экзогенными) переменными, называется открытой.

По отношению к временному фактору модели делятся на динамические и статические Модель называется статической, если среди параметров, участвующих в ее описании, нет временного параметра. Динамической моделью называется модель, если среди ее параметров есть временной параметр, т. е. она отображает систему (процессы в системе) во времени. одновременно.


Линейное программирование

Среди задач математического программирования самыми простыми (и лучше всего изученными) являются так называемые задачи линейного программирования. Характерно для них то, что:

а) показатель эффективности (целевая функция) W линейно зависит от элементов решения х 1 , х 2 , ....., х п и

б) ограничения, налагаемые на элементы решения, имеют вид линейных равенств или неравенств относительно х 1 , х 2 , ..., х п

Такие задачи довольно часто встречаются на практике, например, при решении проблем, связанных с распределением ресурсов, планированием производства, организацией работы транспорта и т. д. Это и естественно, так как во многих задачах практики «расходы» и «доходы» линейно зависят от количества закупленных или утилизированных средств (например, суммарная стоимость партии товаров линейно зависит от количества закупленных единиц; оплата перевозок производится пропорционально весам перевозимых грузов и т. д.).

Любую задачу линейного программирования можно свести к стандартной форме, так называемой «основной задаче линейного программирования» (ОЗЛИ), которая формулируется так: найти неотрицательные значения переменных х 1 ,х 2 , ..., х п, которые удовлетворяли бы условиям-равенствам (1).


Случай, когда f надо обратить не в максимум, а в. минимум, легко сводится к предыдущему, если попросту изменить знак f на обратный (максимизировать не f, а f" = - f). Кроме того, от любых условий-неравенств можно перейти к условиям-равенствам ценой введения новых дополнительных переменных.

В зависимости от вида целевой функции и ограничений можно выделить несколько типов задач линейного программирования или линейных моделей: общая линейная задача, транспортная задача, задача о назначениях.

Транспортная задача (задача Монжа - Канторовича) - математическая задача линейного программирования специального вида о поиске оптимального распределения однородных объектов из аккумулятора к приемникам с минимизацией затрат на перемещение. Для простоты понимания рассматривается как задача об оптимальном плане перевозок грузов из пунктов отправления в пункты потребления, с минимальными затратами на перевозки.

Задача о назначениях формулируется следующим образом:

Имеется некоторое число работ и некоторое число исполнителей. Любой исполнитель может быть назначен на выполнение любой (но только одной) работы, но с неодинаковыми затратами. Нужно распределить работы так, чтобы выполнить работы с минимальными затратами. Если число работ и исполнителей совпадает, то задача называется линейной задачей о назначениях.

Существует несколько способов решения задачи линейного программирования, в частности графический метод и симплекс-метод. Графический метод основан на геометрической интерпретации задачи линейного программирования и применяется для решения задач двумерного пространства. Задачи трёхмерного пространства решаются очень редко, т.к. построение их решения неудобно и лишено наглядности. Рассмотрим метод на примере двумерной задачи.

Найти решение Х = (х 1 ,х 2), удовлетворяющее системе неравенств (3)

(3)
6x 1 +7x 2 ≤42

при котором значение целевой функции F = 2x 1 x 2 достигает максимума.

Построим на плоскости в декартовой прямоугольной системе координат х 1 Ох 2 область допустимых решений задачи.

Каждая из построенных прямых делит плоскость на две полуплоскости. Координаты точек одной полуплоскости удовлетворяют исходному неравенству, а другой нет. Чтобы определить искомую полуплоскость нужно взять какую-нибудь точку, принадлежащую одной из полуплоскостей и проверить: удовлетворяют ли её координаты данному неравенству. Если координаты взятой точки удовлетворяют данному неравенству, то искомой является та полуплоскость, которой принадлежит эта точка. В противном случае другая полуплоскость.

Найдём полуплоскость, определяемую неравенством x 1 -x 2 ≥-3. Для этого, построив прямую (I) x 1 -x 2 =-3, возьмём какую-нибудь точку, принадлежащую одной из двух полученных полуплоскостей, например, точку O(0,0). Координаты этой точки удовлетворяют неравенству x 1 -x 2 ≥-3. Значит полуплоскость, которой принадлежит точка O(0,0) определяется неравенством x 1 -x 2 ≥-3.

Теперь найдём полуплоскость, определяемую неравенством 6x1+7x 2 ≤42.

Строим прямую II 6x 1 +7x 2 =42. Координаты точки O(0,0) удовлетворяют неравенству6x 1 +7x 2 ≤42, а значит, искомой будет вторая полуплоскость.

Теперь ищем полуплоскость для неравенства 2 x 1 -3 x 2 ≤6. Координаты точки O(0,0) удовлетворяют неравенств 2 x 1 -3 x 2 ≤6. Следовательно, полуплоскость, которой принадлежит точка O(0,0) определяется неравенством 2 x 1 -3 x 2 ≤6 (Прямая III).

И полуплоскость для неравенства x 1 + x 2 ≥4. Координаты точки О(0,0) удовлетворяют неравенству x 1 + x 2 ≥4 (Прямая IV). Отсюда прямая x 1 + x 2 =4 определяется первой полуплоскостью.

Неравенства x 1 ≥0 и x 2 ≥0 означают, что область решения будет расположена справа от оси ординат и над осью абсцисс. Таким образом, заштрихованная на рисунке 3 область ABCD будет областью допустимых решений, определённой ограничениями задачи. Целевая функция принимает свое максимальное значение в одной из вершин фигуры ABCD. Для определения этой вершины, построим вектор С (2; -1) и прямую 2x 1 -x 2 =р, где pнекоторая постоянная такая, что прямая2x 1 -x 2 =p имеет общие точки с многоугольником решений. Положим, например, p=1/2 и построим прямую 2 x 1 -x 2 =1/2. Далее, будем передвигать построенную прямую в направлении вектора , до тех пор, пока она не пройдет через последнюю ее общую точку с многоугольником решений. Координаты указанной точки и определяют оптимальный план данной задачи.

На рисунке 3 видно, что последней общей точкой прямой 2x 1 -x 2 =p с многоугольником решений является точка A. Эта точка является местом пересечения прямой II и III, поэтому ее координаты находятся как решение системы уравнений, задающих эти прямые:

(4)
6x 1 +7x 2 =42

При этом значение целевой функции F = 2 x 1 -x 2 = 2* 5.25 – 1 *1.5 = 9.

Точка B будет оптимальным решением задачи Х опт = (х 1опт, х 2опт) и ее координаты будут равны х 1опт =5.25, х 2 опт =1.5.

Рисунок 3 - Область допустимых решений задачи

Симплекс - метод

Данный метод является методом целенаправленного перебора опорных решений задачи линейного программирования. Он позволяет за конечное число шагов либо найти оптимальное решение, либо установить, что оптимальное решение отсутствует.

1) Указать способ нахождения оптимального опорного решения.

2) Указать способ перехода от одного опорного решения к другому, на котором значение целевой функции будет ближе к оптимальному, т.е. указать способ улучшения опорного решения.

3) Задать критерии, которые позволяют своевременно прекратить перебор опорных решений на оптимальном решении или сделать заключение об отсутствии оптимального решения.

Для того, чтобы решить задачу симплексным методом необходимо выполнить следующее:

1) Привести задачу к каноническому виду.

2) Найти начальное опорное решение с "единичным базисом" (если опорное решение отсутствует, то задача не имеет решения ввиду несовместимости системы ограничений).

3) Вычислить оценки разложений векторов по базису опорного решения и заполнить таблицу симплексного метода.

4) Если выполняется признак единственности оптимального решения, то решение задачи заканчивается. Если выполняется условие существования множества оптимальных решений, то путем простого перебора находят все оптимальные решения.

Вычислительная эффективность математических методов оценивается обычно при помощи двух параметров:

1) Числа итераций, необходимого для получения решения;

2) Затрат машинного времени.

В результате численных экспериментов получены результаты для симплекс-метода:

1) Число итераций при решении задач линейного программирования в стандартной форме с ограничениями и переменными заключено между и . Среднее число итераций . Верхняя граница числа итераций равна .

2) Требуемое машинное время пропорционально .

Число ограничений больше влияет на вычислительную эффективность, чем число переменных, поэтому при формулировке задач линейного программирования нужно стремиться к уменьшению числа ограничений пусть даже путём роста числа переменных.


Основные понятия метода имитационного моделирования.

Под термином «имитационное моделирование» («имитационная модель») обычно подразумевают вычисление значений некоторых характеристик развивающегося во времени процесса путем воспроизведения течения этого процесса на компьютере с помощью его математической модели, причем получить требуемые результаты другими способами или невозможно, или крайне затруднительно. Воспроизведение течения процесса на компьютере с помощью математической модели принято называть имитационным экспериментом.

Имитационные модели относятся к классу моделей, которые являются системой соотношений между характеристиками описываемого процесса. Эти характеристики разделяют на внутренние («эндогенные», «фазовые переменные») и внешние («экзогенные», «параметры»). Приблизительно внутренние характеристики - это те, значения которых намереваются узнать с помощью средств математического моделирования; внешние - такие, от которых внутренние характеристики существенно зависят, но обратная зависимость (с практически приемлемой точностью) не имеет места.

Модель, способная давать прогноз значений внутренних характеристик, должна быть замкнутой («замкнутая модель»), в том смысле, что ее соотношения позволяют вычислять внутренние характеристики при известных внешних. Процедура определения внешних характеристик модели называется ее идентификацией, или калибровкой. Математические модели описанного класса (к ним относят имитационные модели) определяют отображение, позволяющее получить по известным значениям внешних характеристик значения внутренних. Далее это отображение будет называться отображением, ассоциированным с моделью.

В основе моделей рассматриваемого класса лежит постулат о независимости внешних характеристик от внутренних, а соотношения модели являются формой записи ассоциированного с ней отображения. Как показано на рисунке 4 в процессе имитационного моделирования исследователь имеет дело с четырьмя основными элементами:

Реальная система;

Логико-математическая модель моделируемого объекта;

Имитационная (машинная) модель;

ЭВМ, на которой осуществляется имитация – направленный вычислительный эксперимент.

Исследователь изучает реальную систему, разрабатывает логико-математическую модель реальной системы. Имитационный характер исследования предполагает наличие логико или логико-математических моделей, описываемых изучаемый процесс. Выше, реальная система определялась как совокупность взаимодействующих элементов, функционирующих во времени. Составной характер сложной системы описывает представление ее модели в виде трех множеств:A, S, T, где
А – множество элементов (в их число включается и внешняя среда);
S – множество допустимых связей между элементами (структура модели);
Т – множество рассматриваемых моментов времени.

Рисунок 4 Процесс имитационного моделирования

Особенностью имитационного моделирования является то, что имитационная модель позволяет воспроизводить моделируемые объекты:

С сохранением их логической структуры;

С сохранением поведенческих свойств (последовательности чередования во времени событий, происходящих в системе), т.е. динамики взаимодействий.

При имитационном моделировании структура моделируемой системы адекватно отображается в модели, а процессы ее функционирования проигрываются (имитируются) на построенной модели. Поэтому построение имитационной модели заключается в описании структуры и процессов функционирования моделируемого объекта или системы.

Различают имитационные модели:

Непрерывные;

Дискретные;

Непрерывно-дискретные.

В непрерывных имитационных моделях переменные изменяются непрерывно, состояние моделируемой системы меняется как непрерывная функция времени, и, как правило, это изменение описывается системами дифференциальных уравнений. Соответственно продвижение модельного времени зависит от численных методов решения дифференциальных уравнений. В дискретных имитационных моделях переменные изменяются дискретно в определенные моменты имитационного времени (наступления событий).

Динамика дискретных моделей представляет собой процесс перехода от момента наступления очередного события к моменту наступления следующего события. Поскольку в реальных системах непрерывные и дискретные процессы часто невозможно разделить, были разработаны непрерывно-дискретные модели, в которых совмещаются механизмы продвижения времени, характерные для этих двух процессов.

Метод имитационного моделирования позволяет решать задачи высокой сложности, обеспечивает имитацию сложных и многообразных процессов, с большим количеством элементов. Отдельные функциональные зависимости в таких моделях могут описываться громоздкими математическими соотношениями. Поэтому имитационное моделирование эффективно используется в задачах исследования систем со сложной структурой с целью решения конкретных проблем. Имитационная модель содержит элементы непрерывного и дискретного действия, поэтому применяется для исследования динамических систем, когда требуется анализ узких мест, исследование динамики функционирования, когда желательно наблюдать на имитационной модели ход процесса в течение определенного времени.

Имитационное моделирование - эффективный аппарат исследования стохастических систем, когда исследуемая система может быть подвержена влиянию многочисленных случайных факторов сложной природы. Имеется возможность проводить исследование в условиях неопределенности, при неполных и неточных данных. Имитационное моделирование является важным фактором в системах поддержки принятия решений, т.к. позволяет исследовать большое число альтернатив (вариантов решений), проигрывать различные сценарии при любых входных данных.

Главное преимущество имитационного моделирования состоит в том, что исследователь для проверки новых стратегий и принятия решений, при изучении возможных ситуаций, всегда может получить ответ на вопрос “Что будет, если?”. Имитационная модель позволяет прогнозировать, когда речь идет о проектируемой системе или исследуются процессы развития (т.е. в тех случаях, когда реальной системы еще не существует). В имитационной модели может быть обеспечен различный, в том числе и высокий уровень детализации моделируемых процессов. При этом модель создается поэтапно, эволюционно.


СПИСОК ЛИТЕРАТУРЫ

1. Блинов, Ю.Ф. Методы математического моделирования [Текст] : Электронное учебное пособие / Ю.Ф. Блинов, В.В. Иванцов, П.В. Серба. –Таганрог: ТТИ ЮФУ, 2012. –42 с.

2. Вентцель, Е.С. Исследование операций. Задачи, принципы, методология. [Текст] : Учебное пособие / Е.С. Вентцель - М. : КНОРУС, 2010. - 192 с.

3. Гетманчук, А. В. Экономико-математические методы и модели [Текст]: Учебное пособие для бакалавров. / А.В. Гетманчук - М. : Издательско-торговая корпорация «Дашков и Ко», 2013. -188 с.

4. Замятина, О.М. Моделирование систем. [Текст] : Учебное пособие. / О.М. Замятина – Томск: Изд-во ТПУ, 2009. – 204 с.

5. Павловский, Ю.Н. Имитационное моделирование. [Текст] : учебное пособие для студентов ВУЗов / Ю.Н.Павловский, Н.В.Белотелов, Ю.И.Бродский - М. : Издательский центр «Академия», 2008. – 236 с.

Математическая модель - приближенное описание объекта моделирования, выраженное с помощью математической символики .

Математические модели появились вместе с математикой много веков назад. Огромный толчок развитию математического моделирования придало появление ЭВМ. Применение вычислительных машин позволило проанализировать и применить на практике многие математические модели, которые раньше не поддавались аналитическому исследованию. Реализованная на компьютере математическая модель называется компьютерной математической моделью , а проведение целенаправленных расчетов с помощью компьютерной модели называется вычислительным экспериментом .

Этапы компьютерного математического моделирования изображены на рисунке. Первый этап - определение целей моделирования . Эти цели могут быть различными:

1) модель нужна для того, чтобы понять, как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);

2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);

3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Поясним на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же вызвало уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, “вдруг” начинают резко менять численность. И здесь математическое моделирование позволяет (с известной долей достоверности) установить причину (или по крайней мере опровергнуть определенную гипотезу).

Выработка концепции управления объектом - другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве относительно легко, то проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства несравненно труднее. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительную помощь.

Второй этап : определение входных и выходных параметров модели; разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием, или разделением по рангам (см. Формализация и моделирование ”).

Третий этап : построение математической модели. На этом этапе происходит переход от абстрактной формулировки модели к формулировке, имеющей конкретное математическое представление.

Математическая модель - это уравнения, системы уравнений, системы неравенств, дифференциальные уравнения или системы таких уравнений и пр.

Четвертый этап : выбор метода исследования математической модели. Чаще всего здесь используются численные методы, которые хорошо поддаются программированию. Как правило, для решения одной и той же задачи подходит несколько методов, различающихся точностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса моделирования.

Пятый этап : разработка алгоритма, составление и отладка программы для ЭВМ - трудно формализуемый процесс. Из языков программирования многие профессионалы для математического моделирования предпочитают FORTRAN: как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математических методов. В ходу и такие языки, как PASCAL, BASIC, C, - в зависимости от характера задачи и склонностей программиста.

Шестой этап : тестирование программы. Работа программы проверяется на тестовой задаче с заранее известным ответом. Это - лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. Обычно тестирование заканчивается тогда, когда пользователь по своим профессиональным признакам сочтет программу верной.

Седьмой этап : собственно вычислительный эксперимент, в процессе которого выясняется, соответствует ли модель реальному объекту (процессу). Модель достаточно адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментально полученными характеристиками с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

Классификация математических моделей

В основу классификации математических моделей можно положить различные принципы. Можно классифицировать модели по отраслям наук (математические модели в физике, биологии, социологии и т.д.). Можно классифицировать по применяемому математическому аппарату (модели, основанные на применении обыкновенных дифференциальных уравнений, дифференциальных уравнений в частных производных, стохастических методов, дискретных алгебраических преобразований и т.д.). Наконец, если исходить из общих задач моделирования в разных науках безотносительно к математическому аппарату, наиболее естественна такая классификация:

· дескриптивные (описательные) модели;

· оптимизационные модели;

· многокритериальные модели;

· игровые модели.

Поясним это на примерах.

Дескриптивные (описательные) модели . Например, моделирование движения кометы, вторгшейся в Солнечную систему, производится с целью предсказания траектории ее полета, расстояния, на котором она пройдет от Земли, и т.д. В этом случае цели моделирования носят описательный характер, поскольку нет никаких возможностей повлиять на движение кометы, что-то в нем изменить.

Оптимизационные модели используются для описания процессов, на которые можно воздействовать, пытаясь добиться достижения заданной цели. В этом случае в модель входит один или несколько параметров, доступных влиянию. Например, меняя тепловой режим в зернохранилище, можно задаться целью подобрать такой режим, чтобы достичь максимальной сохранности зерна, т.е. оптимизировать процесс хранения.

Многокритериальные модели . Нередко приходится оптимизировать процесс по нескольким параметрам одновременно, причем цели могут быть весьма противоречивыми. Например, зная цены на продукты и потребность человека в пище, нужно организовать питание больших групп людей (в армии, детском летнем лагере и др.) физиологически правильно и, одновременно с этим, как можно дешевле. Ясно, что эти цели совсем не совпадают, т.е. при моделировании будет использоваться несколько критериев, между которыми нужно искать баланс.

Игровые модели могут иметь отношение не только к компьютерным играм, но и к весьма серьезным вещам. Например, полководец перед сражением при наличии неполной информации о противостоящей армии должен разработать план: в каком порядке вводить в бой те или иные части и т.д., учитывая и возможную реакцию противника. Есть специальный раздел современной математики - теория игр, - изучающий методы принятия решений в условиях неполной информации.

В школьном курсе информатики начальное представление о компьютерном математическом моделировании ученики получают в рамках базового курса. В старших классах математическое моделирование может глубоко изучаться в общеобразовательном курсе для классов физико-математического профиля, а также в рамках специализированного элективного курса.

Основными формами обучения компьютерному математическому моделированию в старших классах являются лекционные, лабораторные и зачетные занятия. Обычно работа по созданию и подготовке к изучению каждой новой модели занимает 3–4 урока. В ходе изложения материала ставятся задачи, которые в дальнейшем должны быть решены учащимися самостоятельно, в общих чертах намечаются пути их решения. Формулируются вопросы, ответы на которые должны быть получены при выполнении заданий. Указывается дополнительная литература, позволяющая получить вспомогательные сведения для более успешного выполнения заданий.

Формой организации занятий при изучении нового материала обычно служит лекция. После завершения обсуждения очередной модели учащиеся имеют в своем распоряжении необходимые теоретические сведения и набор заданий для дальнейшей работы. В ходе подготовки к выполнению задания учащиеся выбирают подходящий метод решения, с помощью какого-либо известного частного решения тестируют разработанную программу. В случае вполне возможных затруднений при выполнении заданий дается консультация, делается предложение более детально проработать указанные разделы в литературных источниках.

Наиболее соответствующим практической части обучения компьютерному моделированию является метод проектов. Задание формулируется для ученика в виде учебного проекта и выполняется в течение нескольких уроков, причем основной организационной формой при этом являются компьютерные лабораторные работы. Обучение моделированию с помощью метода учебных проектов может быть реализовано на разных уровнях.
Первый - проблемное изложение процесса выполнения проекта, которое ведет учитель.
Второй - выполнение проекта учащимися под руководством учителя.
Третий - самостоятельное выполнение учащимися учебного исследовательского проекта.

Результаты работы должны быть представлены в численном виде, в виде графиков, диаграмм. Если имеется возможность, процесс представляется на экране ЭВМ в динамике. По окончанию расчетов и получению результатов проводится их анализ, сравнение с известными фактами из теории, подтверждается достоверность и проводится содержательная интерпретация, что в дальнейшем отражается в письменном отчете.

Если результаты удовлетворяют ученика и учителя, то работа считается завершенной, и ее конечным этапом является составление отчета. Отчет включает в себя краткие теоретические сведения по изучаемой теме, математическую постановку задачи, алгоритм решения и его обоснование, программу для ЭВМ, результаты работы программы, анализ результатов и выводы, список использованной литературы.

Когда все отчеты составлены, на зачетном занятии учащиеся выступают с краткими сообщениями о проделанной работе, защищают свой проект. Это является эффективной формой отчета группы, выполняющей проект, перед классом, включая постановку задачи, построение формальной модели, выбор методов работы с моделью, реализацию модели на компьютере, работу с готовой моделью, интерпретацию полученных результатов, прогнозирование. В итоге учащиеся могут получить две оценки: первую - за проработанность проекта и успешность его защиты, вторую - за программу, оптимальность ее алгоритма, интерфейс и т.д. Учащиеся получают отметки и в ходе опросов по теории.

Существенный вопрос - каким инструментарием пользоваться в школьном курсе информатики для математического моделирования? Компьютерная реализация моделей может быть осуществлена:

· с помощью табличного процессора (как правило, MS Excel);

· путем создания программ на традиционных языках программирования (Паскаль, Бейсик и др.), а также на их современных версиях (Delphi, Visual Basic for Application и т.п.);

· с помощью специальных пакетов прикладных программ для решения математических задач (MathCAD и т.п.).

На уровне основной школы первое средство представляется более предпочтительным. Однако в старшей школе, когда программирование является, наряду с моделированием, ключевой темой информатики, желательно привлекать его в качестве инструмента моделирования. В процессе программирования учащимся становятся доступными детали математических процедур; более того, они просто вынуждены их осваивать, а это способствует и математическому образованию. Что же касается использования специальных пакетов программ, то это уместно в профильном курсе информатики в качестве дополнения к другим инструментам.

Определить доминирующие признаки классификации объекта локализации и разработать математическую модель под задачи анализа изображений мимики.

Задачи

Поиск и анализ способов локализации лица, определение доминирующих признаков классификации, разработка математической модели оптимальной под задачи распознавания движения мимики.

Тема

Помимо определения оптимального цветового пространства для построения выделяющихся объектов на заданном классе изображения, которая проводилась на предыдущем этапе исследования, немаловажное значение также играет определение доминирующих признаков классификации и разработка математической модели изображений мимики.

Для решения данной задачи необходимо, прежде всего, задать системе особенности модификации задачи обнаружения лица видеокамерой, а затем уже проводить локализацию движения губ.

Что касается первой задачи, то следует выделить две их разновидности:
Локализация лица (Face localization);
Отслеживание перемещения лица (Face tracking) .
Так как перед нами стоит задача разработки алгоритма распознавания мимики, то логично предположить, что данную систему будет использовать один пользователь, который не слишком активно будет двигать головой. Следовательно, для реализации технологии распознавания движения губ необходимо взять за основу упрощенный вариант задачи обнаружения, где на изображении присутствует одно и только одно лицо.

А это значит, что поиск лица можно будет проводить сравнительно редко (порядка 10 кадров/сек. и даже менее). Вместе с тем, движения губ говорящего во время разговора являются достаточно активными, а, следовательно, оценка их контура должна проводиться с большей интенсивностью.

Задача поиска лица на изображении может быть решена существующими средствами. Сегодня имеются несколько методов обнаружения и локализации лица на изображении, которые можно разделить на 2 категории:
1. Эмпирическое распознавание;
2. Моделирование изображения лица. .

К первой категории относятся методы распознавания «сверху-вниз» на основе инвариантных свойств (invariant features) изображений лица, опираясь на предположение, что существуют некоторые признаки присутствия лиц на изображении инвариантные относительно условий съемки. Данные методы можно разделить на 2 подкатегории:
1.1. Обнаружение элементов и особенностей (features), которые характерны для изображения лица (края, яркость, цвет, характерная форма черт лица и др.) , .;
1.2. Анализ обнаруженных особенностей, вынесение решения о количестве и расположении лиц (эмпирический алгоритм, статистика взаимного расположения признаков, моделирование процессов визуальных образов, применение жестких и деформируемых шаблонов и т.д.) , .

Для корректной работы алгоритма необходимо создание базы данных особенностей лица с последующим тестированием. Для более точной реализации эмпирических методов могут быть использованы модели, которые позволяют учесть возможности трансформации лица, а, следовательно, имеют либо расширенный набор базовых данных для распознавания, либо механизм, позволяющий моделировать трансформацию на базовых элементах. Сложности с построением базы данных классификатора ориентированных на самый различный спектр пользователей с индивидуальными особенностями, чертами лица и так далее, способствует снижению точности распознавания данного метода.

Ко второй категории относятся методы математической статистики и машинного обучения. Методы этой категории опираются на инструментарий распознавания образов, рассматривая задачу обнаружения лица, как частный случай задачи распознавания. Изображению ставится некий вектор признаков, который используется для классификации изображений на два класса: лицо/не лицо. Самый распространенный способ получения вектора признаков это использование самого изображения: каждый пиксель становится компонентом вектора, превращая изображение n×m в вектор пространства R^(n×m), где n и m – целые положительные числа. . Недостатком такого представления является чрезвычайно высокая размерность пространства признаков. Достоинство этого метода стоит в исключении из всей процедуры построение классификатора участия человека, а также возможность тренировки самой системы под конкретного пользователя. Поэтому использование методов моделирования изображения для построения математической модели локализации лица является оптимальным для решения нашей задачи.

Что касается сегментирования профиля лица и отслеживания положение точек губ по последовательности кадров, то для решения данной задачи также следует использовать математические методы моделирования. Имеются несколько способов определения движения мимики, самыми известными из них являются использование математической модели на основе активных контурных моделей:

Локализация области мимики на основе математической модели активных контурных моделей

Активный контур (змейка) – это деформирующаяся модель, шаблон которой задан в форме параметрической кривой, инициализированный вручную набором контрольных точек, лежащих на открытой или замкнутой кривой на входном изображении.

Для адаптации активного контура к изображению мимики необходимо провести соответствующую бинариризацию исследуемого объекта, то есть его преобразование в разновидность цифровых растровых изображений, а затем уже следует проводить соответствующую оценку параметров активного контура и вычисление вектора признаков.

Активная контурная модель определяется как:
Множество точек N;
Внутренних областей энергии интереса (internal elastic energy term);
Внешних областей энергии интереса (external edge based energy term).

Для улучшения качества распознавания выделяются два цветовых класса – кожа и губы. Функция принадлежности цветовому классу имеет значение в диапазоне от 0 до 1.

Уравнение активной контурной модели (змейки) представляется выражающейся формулой v(s) как:

Где E – это энергия змейки (активной контурной модели). Первые два терма описывают энергию регулярности активной контурной модели (змейки). В нашей полярной координатной системе v(s) = , s от 0 до 1. Третье слагаемое – энергия, относящаяся ко внешней силе, полученной из изображения, четвертое – с силой давления.

Внешняя сила определяется, исходя из вышеописанных характеристик. Она способна сдвинуть контрольные точки к некоторому значению интенсивности. Она вычисляется как:

Множитель градиента (производная) вычисляется в точках змейки вдоль соответствующей радиальной линии. Сила увеличивается, если градиент отрицательный и уменьшается в обратном случае. Коэффициент перед градиентом – это весовой фактор, зависящий от топологии изображения. Сжимающая сила – это просто константа, используется ½ от минимального весового коэффициента. Наилучшая форма змейки получается при минимизации энергетического функционала после некоторого числа итераций.

Рассмотрим основные операции обработки изображения более подробно. Для простоты предположим, что мы уже каким-то образом выделили область рта диктора. В этом случае основные операции по обработке полученного изображения, которые нам необходимо выполнить, представлены на рис. 3.

Заключение

Для определения доминирующих признаков классификации изображения в ходе проведения исследовательской работы было выявлены особенности модификации задачи обнаружения лица видеокамерой. Среди всех методов локализации лица и обнаружения исследуемой области мимики наиболее подходящими под задачи создания универсальной системы распознавания для мобильных устройств являются методы моделирования изображения лица.
Разработка математической модели изображений движения мимики основана на системе активных контурных моделей бинаризации исследуемого объекта. Так как данная математическая модель позволяет после смены цветового пространства с RGB в цветовую модель YCbCr осуществлять эффективное преобразование интересуемого объекта, для последующего его анализа на основе активных контурных моделей и выявления четких границ мимики после соответствующих итераций изображения.

Список использованных источников

1. Вежневец В., Дягтерева А. Обнаружение и локализация лица на изображении. CGM Journal, 2003
2. Там же.
3. E. Hjelmas and B.K. Low, Face detection: A survey, Journal of Computer vision and image understanding, vol.83, pp. 236-274, 2001.
4. G. Yang and T.S. Huang, Human face detection in complex background, Pattern recognition, vol.27, no.1, pp.53-63, 1994
5. K. Sobottka and I. Pitas, A novel method for automatic face segmentation, facial feature extraction and tracking, Signal processing: Image communication, Vol. 12, №3, pp. 263-281, June, 1998
6. F. Smeraldi, O. Cormona, and J.Big.un., Saccadic search with Gabor features applied to eye detection and real-time head tracking, Image Vision Comput. 18, pp. 323-329, 200
7. Гомозов А.А., Крюков А.Ф. Анализ эмпирических и математических алгоритмов распознавания человеческого лица. Network-journal. Московский энергетический институт (Технический университет). №1 (18), 2011

Продолжение следует

Для эффективного решения различных задач обработки И необходима их математическая постановка, которая прежде всего включает в себя математическое описание, т. е. модель И как объекта исследования. К настоящему времени разработан целый ряд таких моделей , некоторые из них рассматриваются в этой главе.

1.1. Случайные поля

Наиболее распространенными в настоящее время являются информационные комплексы, включающие в себя пространственные системы датчиков и цифровую вычислительную технику. Поэтому мы будем в основном рассматривать МИ с дискретными пространственными и временными переменными. Не ограничивая общности, будем считать, что МИ заданы на многомерных прямоугольных сетках с единичным шагом. На рис. 1.1,а и 1.1,б изображены двумерная и трехмерная сетки. В общем случае И задано в узлах n-мерной сетки .

В зависимости от физической природы значения И могут быть скалярными (например, яркость монохроматического изображения), векторными (поле скоростей, цветные изображения, поле смещений) и более сложнозначными (например, матричными). Если обозначить через значение И в узле (пикселе) , то И есть совокупность этих значений на сетке: .

Если данные представляют собой временную последовательность И, то иногда удобно считать эту последовательность одним И, увеличив размерность сетки на единицу. Например, последовательность из плоских И (рис. 1.1,а) можно рассматривать как одно трехмерное И (рис. 2.1,б).

Если требуется временную переменную выделить особо, то будем ее записывать сверху: . Это И задано на прямом произведении сеток и I, где I – множество значений временного индекса. Сечение , т.е. совокупность отсчетов И при фиксированном значении временного индекса i, называется i-м кадром И . Каждый кадр задан на сетке . Например, на рис. 1.1,б изображено три двухмерных кадра.

Таким образом, МИ можно рассматривать как некоторую функцию, определенную на многомерной сетке. Значение элементов И невозможно точно предсказать заранее (иначе система наблюдения была бы не нужна), поэтому естественно рассматривать эти значения как случайные величины (СВ), применяя аппарат теории вероятностей и математической статистики. Итак, приходим к основной модели МИ – системе СВ, заданных на многомерной сетке. Такие системы называются дискретными случайными полями (СП) или случайными функциями нескольких переменных.

Для описания СП, как и любой другой системы СВ, можно задать сов-местную функцию распределения вероятностей (ФР) его элементов или совместную плотность распределения вероятностей (ПРВ) . Однако И обычно состоит из очень большого количества элементов (тысячи и миллионы), поэтому ФР (или ПРВ) при таком количестве переменных становится необозримой и требуются другие, менее громоздкие методы описания СП.